Anatase-TiO2/CNTs nanocomposite as a superior high-rate anode material for lithium-ion batteries

被引:23
作者
Liu, Jinlong [1 ,2 ]
Feng, Haibo [1 ]
Jiang, Jianbo [1 ]
Qian, Dong [1 ,2 ]
Li, Junhua [1 ]
Peng, Sanjun [1 ]
Liu, Youcai [1 ]
机构
[1] Cent S Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[2] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Oxide materials; Composite materials; Nanostructured materials; Electrode materials; Chemical synthesis; ANATASE TIO2 NANOSHEETS; CARBON NANOTUBES; NANOSTRUCTURED TIO2; ENERGY-STORAGE; LI; PERFORMANCE; COMPOSITE; INTERCALATION; NANOPARTICLE; CHALLENGES;
D O I
10.1016/j.jallcom.2014.03.089
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Anatase-TiO2/carbon nanotubes (CNTs) with robust nanostructure is fabricated via a facile two-step synthesis by ammonia water assisted hydrolysis and subsequent calcination. The as-synthesized nanocomposite was characterized employing X-ray powder diffraction, Fourier transform infrared spectrophotometry, Raman spectrophotometry, thermal gravimetric analysis, transmission electron microscopy, high-resolution transmission electron microscopy and selected area electronic diffraction, and its electrochemical properties as an anode material for lithium-ion batteries (LIBs) were investigated by cyclic voltammetry, galvanostatic discharge/charge test and electrochemical impendence spectroscopy. The results show that the pure anatase TiO2 nanoparticles with diameters of about 10 nm are uniformly distributed on/among the CNTs conducting network. The as-synthesized nanocomposite exhibits remarkably improved performances in LIBs, especially super-high rate capability and excellent cycling stability. Specifically, a reversible capacity as high as 92 mA h g(-1) is achieved even at a current density of 10 A g(-1) (60 C). After 100 cycles at 0.1 A g(-1), it shows good capacity retention of 185 mA h g(-1) with an outstanding coulombic efficiency up to 99%. Such superior Li+ storage properties demonstrate the reinforced synergistic effects between the nano-sized TiO2 and the interweaved CNTs network, endowing the nanocomposite with great application potential in high-power LIBs. (C) 2014 Elsevier B. V. All rights reserved.
引用
收藏
页码:144 / 148
页数:5
相关论文
共 47 条
[1]   Design and evaluation of novel Zn doped mesoporous TiO2 based anode material for advanced lithium ion batteries [J].
Ali, Zahid ;
Cha, Seung Nam ;
Sohn, Jung Inn ;
Shakir, Imran ;
Yan, Changzeng ;
Kim, Jong Min ;
Kang, Dae Joon .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (34) :17625-17629
[2]   Wet chemical synthesis of Cu/TiO2 nanocomposites with integrated nano-current-collectors as high-rate anode materials in lithium-ion batteries [J].
Cao, Fei-Fei ;
Xin, Sen ;
Guo, Yu-Guo ;
Wan, Li-Jun .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (06) :2014-2020
[3]   Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells [J].
Chen, Dehong ;
Huang, Fuzhi ;
Cheng, Yi-Bing ;
Caruso, Rachel A. .
ADVANCED MATERIALS, 2009, 21 (21) :2206-+
[4]   Titanium Dioxide Photocatalysis in Atmospheric Chemistry [J].
Chen, Haihan ;
Nanayakkara, Charith E. ;
Grassian, Vicki H. .
CHEMICAL REVIEWS, 2012, 112 (11) :5919-5948
[5]   Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO2 Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage [J].
Chen, Jun Song ;
Tan, Yi Ling ;
Li, Chang Ming ;
Cheah, Yan Ling ;
Luan, Deyan ;
Madhavi, Srinivasan ;
Boey, Freddy Yin Chiang ;
Archer, Lynden A. ;
Lou, Xiong Wen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (17) :6124-6130
[6]   Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [J].
Chen, Xiaobo ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2007, 107 (07) :2891-2959
[7]   MICROSCOPIC STUDIES OF TRANSITION-METAL CHALCOGENIDES [J].
CHIANELLI, RR .
JOURNAL OF CRYSTAL GROWTH, 1976, 34 (02) :239-244
[8]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[9]   Nb-Doped TiO2 Nanofibers for Lithium Ion Batteries [J].
Fehse, M. ;
Cavaliere, S. ;
Lippens, P. E. ;
Savych, I. ;
Iadecola, A. ;
Monconduit, L. ;
Jones, D. J. ;
Roziere, J. ;
Fischer, F. ;
Tessier, C. ;
Stievanot, L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (27) :13827-13835
[10]   Performance of batteries for electric vehicles on short and longer term [J].
Gerssen-Gondelach, Sarah J. ;
Faaij, Andre P. C. .
JOURNAL OF POWER SOURCES, 2012, 212 :111-129