High resolution bioprinting of multi-component hydrogels

被引:48
|
作者
Zimmermann, Ralf [1 ]
Hentschel, Christoph [1 ]
Schroen, Felix [1 ]
Moedder, Denise [1 ]
Buettner, Teresa [1 ]
Atallah, Passant [1 ]
Wegener, Thomas [2 ]
Gehring, Thomas [2 ]
Howitz, Steffen [2 ]
Freudenberg, Uwe [1 ]
Werner, Carsten [1 ,3 ]
机构
[1] Max Bergmann Ctr Biomat Dresden, Leibniz Inst Polymer Res Dresden, Hohe Str 6, D-01069 Dresden, Germany
[2] GeSiM Gesell Silizium Mikrosyst mbH, Bautzner Landstr 45, D-01454 Radeberg, Germany
[3] Tech Univ Dresden, Ctr Regenerat Therapies Dresden, Fetscherstr 105, D-01307 Dresden, Germany
关键词
glycosaminoglycan hydrogels; inkjet printing; cell-instructive materials; tissue engineering; TISSUE; DESIGN; CELLS; GUIDE;
D O I
10.1088/1758-5090/ab2aa1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Materials capable of directing cell fate by providing spatially-graded mechanical and biomolecular cues are critically important in the reconstitution of living matter. Herein, we report a multi-component inkjet bioprinting method that allows for spatially varying composition and network properties in cell-instructive glycosaminoglycan (GAG)-based biohybrid and pure poly(ethylene glycol) hydrogels with unprecedented (50 mu m) resolution. The principle relies on the covalent crosslinking of different polymeric precursors through a very rapid bio-orthogonal Michael type addition scheme adjusted in ways to occur during the fusion ofbio-ink droplets prior to and upon contact with the target. Exemplary data show that chemotactic molecular gradients produced by this approach within printed GAG-gels of defined zonal architecture can effectively direct migratory activity and morphogenesis of embedded human bone-marrow derived mesenchymal stem cells. The introduced methodology is expected to enable a new, holistic level of control over reductionistic tissue and organoid models.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A high resolution upwind scheme for multi-component flows
    Igra, D
    Takayama, K
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 38 (10) : 985 - 1007
  • [2] High-resolution multi-component distributed acoustic sensing
    Ning, Ivan Lim Chen
    Sava, Paul
    GEOPHYSICAL PROSPECTING, 2018, 66 (06) : 1111 - 1122
  • [3] High resolution zeta potential measurements: Analysis of multi-component mixtures
    Connah, MT
    Kaszuba, M
    Morfesis, A
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2002, 23 (05) : 663 - 669
  • [4] Graphene Oxide-Based Multi-Component Antimicrobial Hydrogels
    Nizami, Mohammed Zahedul Islam
    Campeon, Benoit Denis Louis
    Satoh, Akira
    Nishina, Yuta
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2022, 95 (05) : 713 - 720
  • [5] Photo-patterned multi-domain multi-component hybrid hydrogels
    Cornwell, Daniel J.
    Smith, David K.
    CHEMICAL COMMUNICATIONS, 2020, 56 (51) : 7029 - 7032
  • [6] Multi-component wavefield separation applied to high-resolution surface seismic data
    Richwalski, S
    Roy-Chowdhury, K
    Mondt, JC
    JOURNAL OF APPLIED GEOPHYSICS, 2001, 46 (02) : 101 - 114
  • [7] A multi-component matrix loop algebra and a unified expression of the multi-component AKNS hierarchy and the multi-component BPT hierarchy
    Zhang, YF
    PHYSICS LETTERS A, 2005, 342 (1-2) : 82 - 89
  • [8] Commercially Relevant Orthogonal Multi-Component Supramolecular Hydrogels for Programmed Cell Growth
    Vieira, Vania M. P.
    Lima, Ana C.
    de Jong, Menno
    Smith, David K.
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (56) : 15112 - 15118
  • [9] Biomimetic Hydrogels With Multi-component Cell Adhesive Ligands For Endothelial Cell Function
    Shayan, M.
    Suhar, R.
    Heilshorn, S.
    Huang, N.
    TISSUE ENGINEERING PART A, 2022, 28 : 36 - 37
  • [10] Multi-component IF estimation
    Hussain, ZM
    Boashash, B
    PROCEEDINGS OF THE TENTH IEEE WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, 2000, : 559 - 563