A Novel Multi-Objective Competitive Swarm Optimization Algorithm

被引:3
|
作者
Mohapatra, Prabhujit [1 ]
Das, Kedar Nath [2 ]
Roy, Santanu [2 ]
Kumar, Ram [3 ]
Dey, Nilanjan [4 ]
机构
[1] VIT Univ, Vellore, Tamil Nadu, India
[2] NIT Silchar, Silchar, India
[3] Katihar Engn Coll, Katihar, India
[4] Techno India Coll Technol, Kolkata, W Bengal, India
关键词
Competitive Swarm Optimizer; Evolutionary Algorithms; Multi-Objective Optimization; Non-Dominating Sorting; Pareto Front; Particle Swarm Optimization; Particle Swarm Optimizer; Swarm Intelligence; EVOLUTIONARY ALGORITHMS;
D O I
10.4018/IJAMC.2020100106
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, a new algorithm, namely the multi-objective competitive swarm optimizer (MOCSO), is introduced to handle multi-objective problems. The algorithm has been principally motivated from the competitive swarm optimizer (CSO) and the NSGA-II algorithm. In MOCSO, a pair wise competitive scenario is presented to achieve the dominance relationship between two particles in the population. In each pair wise competition, the particle that dominates the other particle is considered the winner and the other is consigned as the loser. The loser particles learn from the respective winner particles in each individual competition. The inspired CSO algorithm does not use any memory to remember the global best or personal best particles, hence, MOCSO does not need any external archive to store elite particles. The experimental results and statistical tests confirm the superiority of MOCSO over several state-of-the-art multi-objective algorithms in solving benchmark problems.
引用
收藏
页码:114 / 129
页数:16
相关论文
共 50 条
  • [21] An improved imperialist competitive algorithm for multi-objective optimization
    Bilel, Najlawi
    Mohamed, Nejlaoui
    Zouhaier, Affi
    Lotfi, Romdhane
    ENGINEERING OPTIMIZATION, 2016, 48 (11) : 1823 - 1844
  • [22] A multi-stage competitive swarm optimization algorithm for solving large-scale multi-objective optimization problems
    Shang, Qingxia
    Tan, Minzhong
    Hu, Rong
    Huang, Yuxiao
    Qian, Bin
    Feng, Liang
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 260
  • [23] A multi-objective particle swarm optimization with a competitive hybrid learning strategy
    Chen, Fei
    Liu, Yanmin
    Yang, Jie
    Liu, Jun
    Zhang, Xianzi
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (04) : 5625 - 5651
  • [24] Glowworm swarm optimization algorithm for solving multi-objective optimization problem
    He Deng-xu
    Liu Gui-qing
    Zhu Hua-zheng
    2013 9TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2013, : 11 - 15
  • [25] A parallel particle swarm optimization algorithm for multi-objective optimization problems
    Fan, Shu-Kai S.
    Chang, Ju-Ming
    ENGINEERING OPTIMIZATION, 2009, 41 (07) : 673 - 697
  • [26] Constrained multi-objective optimization with dual-swarm assisted competitive swarm optimizer
    Wang, Yubo
    Hu, Chengyu
    Gong, Wenyin
    Ming, Fei
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 86
  • [27] A Novel Cooperation Multi-Objective Optimization Approach: Multi-Swarm Multi-Objective Evolutionary Algorithm Based on Decomposition (MSMOEA/D)
    Liu, Rui
    Chen, Hanning
    Wang, Zhixue
    Hu, Yabao
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [28] A novel PSDE algorithm for multi-objective optimization
    Xu, Meiling
    Dong, Hongxin
    Ji, Zaidi
    Wang, Yiwen
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 2662 - 2667
  • [29] Adaptive evolutionary multi-objective particle swarm optimization algorithm
    Chen, Min-You
    Zhang, Cong-Yu
    Luo, Ci-Yong
    Kongzhi yu Juece/Control and Decision, 2009, 24 (12): : 1851 - 1855
  • [30] A Novel Multi-objective Particle Swarm Optimization Algorithm for Flow Shop Scheduling Problems
    Wang, Wanliang
    Chen, Lili
    Jie, Jing
    Zhao, Yanwei
    Zhang, Jing
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2012, 6839 : 24 - +