Homology of free quantum groups

被引:17
作者
Collins, Benoit [1 ,2 ]
Haertel, Johannes [3 ]
Thom, Andreas [3 ]
机构
[1] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
[2] Univ Lyon 1, Inst Camille Jordan, CNRS, F-69622 Villeurbanne, France
[3] Univ Gottingen, Math Inst, D-37073 Gottingen, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
VON-NEUMANN-ALGEBRAS;
D O I
10.1016/j.crma.2009.01.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the Hochschild homology of the free orthogonal quantum group A(0)(n). We show that it satisfies Poincare duality and should be considered to be a 3-dimensional object. We then use recent results of R. Vergnioux to derive results about the l(2)-homology of A(0)(n) and estimates on the free entropy dimension of its set of generators. In particular, we show that the l(2) Betti-numbers of A(0)(n) all vanish and that the free entropy dimension is less than 1. To cite this article: B. Collins et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights, reserved.
引用
收藏
页码:271 / 276
页数:6
相关论文
共 11 条
[1]  
Banica T, 1997, COMMUN MATH PHYS, V190, P143, DOI 10.1007/s002200050237
[2]  
Connes A, 2005, J REINE ANGEW MATH, V586, P125
[3]  
HARTEL J, THESIS GEORGAUGUST U
[4]  
KRAHMER U, 2007, P C NEW TECHN HOPF A, P117
[5]  
KYED D, MUNSTER J M IN PRESS
[6]   L2-cohomology for von Neumann algebras [J].
Thom, Andreas .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2008, 18 (01) :251-270
[7]   The boundary of universal discrete quantum groups, exactness, and factoriality [J].
Vaes, Stefaan ;
Vergnioux, Roland .
DUKE MATHEMATICAL JOURNAL, 2007, 140 (01) :35-84
[8]   Relation between Hochschild homology and cohomology for Gorenstein rings [J].
Van den Bergh, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (05) :1345-1348
[9]  
VERGNIOUX R, 2008, LENGTHS QUANTUM CAYL
[10]   FREE-PRODUCTS OF COMPACT QUANTUM GROUPS [J].
WANG, SZ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 167 (03) :671-692