APPROXIMATE l-STATE SOLUTIONS OF A SPIN-0 PARTICLE FOR WOODS-SAXON POTENTIAL

被引:12
作者
Arda, Altug [1 ]
Sever, Ramazan [2 ]
机构
[1] Hacettepe Univ, Dept Phys Educ, TR-06800 Ankara, Turkey
[2] Middle E Tech Univ, Dept Phys, TR-06800 Ankara, Turkey
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2009年 / 20卷 / 04期
关键词
Nikiforov-Uvarov method; Klein-Gordon equation; Woods-Saxon potential; PROTON; NUCLEI;
D O I
10.1142/S0129183109013881
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The radial part of Klein-Gordon equation is solved for the Woods-Saxon potential within the framework of an approximation to the centrifugal barrier. The bound states and the corresponding normalized eigenfunctions of the Woods-Saxon potential are computed by using the Nikiforov-Uvarov method. The results are consistent with the ones obtained in the case of generalized Woods-Saxon potential. The solutions of the Schrodinger equation by using the same approximation are also studied as a special case, and obtained the consistent results with the ones obtained before.
引用
收藏
页码:651 / 665
页数:15
相关论文
共 21 条
[1]  
[Anonymous], 1988, Special functions of mathematical physics
[2]  
[Anonymous], 1948, Handbook of Mathematical Functions withFormulas, Graphs, and Mathematical Tables, DOI DOI 10.1119/1.15378
[3]  
[Anonymous], 1971, Practical Quantum Mechanics
[4]  
Bailey W.N., 1935, GEN HYPERGEOMETRIC S
[5]   Polynomial solutions of the Schrodinger equation for the generalized Woods-Saxon potential [J].
Berkdemir, C ;
Berkdemir, A ;
Sever, R .
PHYSICAL REVIEW C, 2005, 72 (02)
[6]  
BERKDEMIR C, ARXIVNUCLTH0410153
[7]  
BERKDEMIR C, ARXIVNUCLTH0501030
[8]  
BERKDEMIR C, ARXIVQUANTPH0502182
[9]  
Bespalova V, 2003, J PHYS G NUCL PARTIC, V29, P1193, DOI 10.1088/0954-3899/29/6/318
[10]   A study of confined quantum systems using the Woods-Saxon potential [J].
Costa, LS ;
Prudente, FV ;
Acioli, PH ;
Neto, JJS ;
Vianna, JDM .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1999, 32 (10) :2461-2470