Interfacial Sliding and Buckling of Monolayer Graphene on a Stretchable Substrate

被引:265
作者
Jiang, Tao [1 ]
Huang, Rui [2 ]
Zhu, Yong [1 ]
机构
[1] N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA
[2] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
graphene; interfacial shear strength; raman spectroscopy; ridge defects; RAMAN-SPECTROSCOPY; NANOMECHANICAL RESONATORS; CARBON NANOTUBES; STRESS TRANSFER; THIN-FILMS; DELAMINATION; STRAIN; TRANSPARENT; COMPOSITES; ADHESION;
D O I
10.1002/adfm.201301999
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The nonlinear mechanical response of monolayer graphene on polyethylene terephthalate (PET) is characterised using in-situ Raman spectroscopy and atomic force microscopy. While interfacial stress transfer leads to tension in graphene as the PET substrate is stretched, retraction of the substrate during unloading imposes compression in the graphene. Two interfacial failure mechanisms, shear sliding under tension and buckling under compression, are identified. Using a nonlinear shear-lag model, the interfacial shear strength is found to range between 0.46 and 0.69 MPa. The critical strain for onset of interfacial sliding is approximate to 0.3%, while the maximum strain that can be transferred to graphene ranges from 1.2% to 1.6% depending on the interfacial shear strength and graphene size. Beyond a critical compressive strain of around -0.7%, buckling ridges are observed after unloading. The results from this work provide valuable insight and design guidelines for a broad spectrum of applications of graphene and other 2D nanomaterials, such as flexible and stretchable electronics, strain sensing, and nanocomposites.
引用
收藏
页码:396 / 402
页数:7
相关论文
共 41 条
[31]   Graphene-based composite materials [J].
Stankovich, Sasha ;
Dikin, Dmitriy A. ;
Dommett, Geoffrey H. B. ;
Kohlhaas, Kevin M. ;
Zimney, Eric J. ;
Stach, Eric A. ;
Piner, Richard D. ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2006, 442 (7100) :282-286
[32]   Subjecting a Graphene Monolayer to Tension and Compression [J].
Tsoukleri, Georgia ;
Parthenios, John ;
Papagelis, Konstantinos ;
Jalil, Rashid ;
Ferrari, Andrea C. ;
Geim, Andre K. ;
Novoselov, Kostya S. ;
Galiotis, Costas .
SMALL, 2009, 5 (21) :2397-2402
[33]   The macroscopic delamination of thin films from elastic substrates [J].
Vella, Dominic ;
Bico, Jose ;
Boudaoud, Arezki ;
Roman, Benoit ;
Reis, Pedro M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (27) :10901-10906
[34]   Super-Elastic Graphene Ripples for Flexible Strain Sensors [J].
Wang, Yi ;
Yang, Rong ;
Shi, Zhiwen ;
Zhang, Lianchang ;
Shi, Dongxia ;
Wang, Enge ;
Zhang, Guangyu .
ACS NANO, 2011, 5 (05) :3645-3650
[35]   Scanning Tunneling Microscopy Characterization of the Electrical Properties of Wrinkles in Exfoliated Graphene Monolayers [J].
Xu, Ke ;
Cao, Peigen ;
Heath, James R. .
NANO LETTERS, 2009, 9 (12) :4446-4451
[36]   Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process [J].
Yoon, Taeshik ;
Shin, Woo Cheol ;
Kim, Taek Yong ;
Mun, Jeong Hun ;
Kim, Taek-Soo ;
Cho, Byung Jin .
NANO LETTERS, 2012, 12 (03) :1448-1452
[37]   Influence of substrate compliance on buckling delamination of thin films [J].
Yu, HH ;
Hutchinson, JW .
INTERNATIONAL JOURNAL OF FRACTURE, 2002, 113 (01) :39-55
[38]   Raman Spectroscopy of Graphene and Bilayer under Biaxial Strain: Bubbles and Balloons [J].
Zabel, Jakob ;
Nair, Rahul R. ;
Ott, Anna ;
Georgiou, Thanasis ;
Geim, Andre K. ;
Novoselov, Kostya S. ;
Casiraghi, Cinzia .
NANO LETTERS, 2012, 12 (02) :617-621
[39]  
Zang JF, 2013, NAT MATER, V12, P321, DOI [10.1038/NMAT3542, 10.1038/nmat3542]
[40]   Structure and Electronic Transport in Graphene Wrinkles [J].
Zhu, Wenjuan ;
Low, Tony ;
Perebeinos, Vasili ;
Bol, Ageeth A. ;
Zhu, Yu ;
Yan, Hugen ;
Tersoff, Jerry ;
Avouris, Phaedon .
NANO LETTERS, 2012, 12 (07) :3431-3436