Boundary effects on the dynamics of chains of coupled oscillators

被引:9
作者
Bambusi, D. [1 ]
Carati, A. [1 ]
Penati, T. [1 ]
机构
[1] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy
关键词
ONE-DIMENSIONAL TURBULENCE; NORMAL-FORM; EQUATIONS; SYSTEMS; FPU;
D O I
10.1088/0951-7715/22/4/013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the dynamics of a chain of coupled particles subjected to a restoring force (Klein-Gordon lattice) in the cases of either periodic or Dirichlet boundary conditions. Precisely, we prove that, when the initial data are of small amplitude and have a long wavelength, the main part of the solution is interpolated by a solution of the nonlinear Schrodinger equation, which in turn has the property that its Fourier coefficients decay exponentially. The first order correction to the solution has Fourier coefficients that decay exponentially in the periodic case, but only as a power in the Dirichlet case. In particular our result allows one to explain the numerical computations of the paper (Bambusi et al 2007 Phys. Lett. A).
引用
收藏
页码:923 / 946
页数:24
相关论文
共 19 条
[1]   Numerical studies on boundary effects on the FPU paradox [J].
Bambusi, D. ;
Muraro, D. ;
Penati, T. .
PHYSICS LETTERS A, 2008, 372 (12) :2039-2042
[2]   Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on zoll manifolds [J].
Bambusi, D. ;
Delort, J.-M. ;
Grebert, B. ;
Szeftel, J. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (11) :1665-1690
[3]   On metastability in FPU [J].
Bambusi, D ;
Ponno, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (02) :539-561
[4]  
Bambusi D, 2005, ANN SCUOLA NORM-SCI, V4, P669
[5]  
Bambusi D, 2002, DISCRETE CONT DYN-B, V2, P109
[6]   EXPONENTIAL STABILITY OF STATES CLOSE TO RESONANCE IN INFINITE-DIMENSIONAL HAMILTONIAN-SYSTEMS [J].
BAMBUSI, D ;
GIORGILLI, A .
JOURNAL OF STATISTICAL PHYSICS, 1993, 71 (3-4) :569-606
[7]   A study of the Fermi-Pasta-Ulam problem in dimension two [J].
Benettin, Giancarlo ;
Gradenigo, Giacomo .
CHAOS, 2008, 18 (01)
[8]   One-dimensional "turbulence" in a discrete lattice [J].
Daumont, I ;
Peyrard, M .
CHAOS, 2003, 13 (02) :624-636
[9]  
Faddeev L. D., 1987, Hamiltonian Methods in the Theory of Solitons
[10]   Breathers on lattices with long range interaction [J].
Flach, S .
PHYSICAL REVIEW E, 1998, 58 (04) :R4116-R4119