Regularity Criteria for the Three-dimensional Navier-Stokes Equations

被引:171
作者
Cao, Chongsheng [1 ]
Titi, Edriss S. [2 ,3 ,4 ]
机构
[1] Florida Int Univ, Dept Math, Miami, FL 33199 USA
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
[4] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
关键词
Three-dimensional Navier-Stokes equations; regularity criterion; global regularity;
D O I
10.1512/iumj.2008.57.3719
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the three-dimensional Navier-Stokes equations subject to periodic boundary conditions or in the whole space. We provide sufficient conditions, in terms of one component of the velocity field, or alternatively in terms of one component of the pressure gradient, for the regularity of strong solutions to the three-dimensional Navier-Stokes equations.
引用
收藏
页码:2643 / 2661
页数:19
相关论文
共 48 条
[1]  
Adams R., 1975, Sobolev Spaces
[2]  
[Anonymous], 2002, ADV MATH SCI APPL
[3]  
[Anonymous], 2002, METHODS APPL ANAL, DOI DOI 10.4310/MAA.2002.V9.N4.A5
[4]  
Berselli L.C., 2002, DIFFER INTEGRAL EQU, V15, P1129
[5]   Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations [J].
Berselli, LC ;
Galdi, GP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (12) :3585-3595
[6]  
BONDAREVSKY V, 1995, C R MATH REP ACAD SC, V17, P109
[7]  
Bondarevsky VG, 1996, CR ACAD SCI I-MATH, V322, P333
[8]  
Cannone M, 2004, HANDBOOK OF MATHEMATICAL FLUID DYNAMICS, VOL 3, P161
[9]  
CAO C, 2007, PRESSURE REGULARITY
[10]   Regularity criterion for solutions of three-dimensional turbulent channel flows [J].
Cao, Chongsheng ;
Qin, Junlin ;
Titi, Edriss S. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (03) :419-428