Solution structure and dynamics of bovine β-lactoglobulin A

被引:0
|
作者
Kuwata, K
Hoshino, M
Forge, V
Era, S
Batt, CA
Goto, Y
机构
[1] Osaka Univ, Inst Prot Res, Suita, Osaka 5650871, Japan
[2] Gifu Univ, Sch Med, Dept Physiol, Gifu 5008705, Japan
[3] Cornell Univ, Dept Food Sci, Ithaca, NY 14853 USA
关键词
alpha-helix to beta-sheet transition; beta-lactoglobulin; dynamics; heteronuclear NMR; protein folding;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Using heteronuclear NMR spectroscopy, we studied the solution structure and dynamics of bovine beta-lactoglobulin A at pH 2.0 and 45 degrees C, where the protein exists as a monomeric native state. The monomeric NMR structure, comprising an eight-stranded continuous antiparallel beta-barrel and one major alpha-helix, is similar to the X-ray dimeric structure obtained at pH 6.2, including beta(I)-strand that forms the dimer interface and loop EF that serves as a lid of the interior hydrophobic hole. {H-1}-N-15 NOE revealed that beta(F), beta(G), and beta(H) strands buried under the major alpha-helix are rigid on a pico- to nanosecond time scale and also emphasized rapid fluctuations of loops and the N- and C-terminal regions.
引用
收藏
页码:2541 / 2545
页数:5
相关论文
共 50 条
  • [31] Genomic architecture of bovine κ-casein and β-lactoglobulin
    Gambra, R.
    Penagaricano, F.
    Kropp, J.
    Khateeb, K.
    Weigel, K. A.
    Lucey, J.
    Khatib, H.
    JOURNAL OF DAIRY SCIENCE, 2013, 96 (08) : 5333 - 5343
  • [32] Effect of thermal and microwave processing on secondary structure of bovine β-lactoglobulin: A molecular modeling study
    Saxena, Rachit
    Vanga, Sai Kranthi
    Raghavan, Vijaya
    JOURNAL OF FOOD BIOCHEMISTRY, 2019, 43 (07)
  • [33] An investigation of molecular dynamics simulation and molecular docking: Interaction of citrus flavonoids and bovine β-lactoglobulin in focus
    Sahihi, M.
    Ghayeb, Y.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2014, 51 : 44 - 50
  • [34] Effects of high hydrostatic pressure on the structure and potential allergenicity of the major allergen bovine β-lactoglobulin
    Meng, Xuanyi
    Bai, Yuxin
    Gao, Jinyan
    Li, Xin
    Chen, Hongbing
    FOOD CHEMISTRY, 2017, 219 : 290 - 296
  • [35] Molecular dynamics simulation of the effect of heat on the conformation of bovine β-lactoglobulin A: A comparison of conventional and accelerated methods
    Euston, S. R.
    FOOD HYDROCOLLOIDS, 2013, 30 (02) : 519 - 530
  • [36] The structure of bovine β-lactoglobulin in crystals grown at pH 3.8 exhibiting novel threefold twinning
    Yeates, Todd O.
    McPherson, Alexander
    ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2019, 75 : 640 - 645
  • [37] Novel polymorphisms in the bovine β-lactoglobulin gene and their effects on β-lactoglobulin protein concentration in milk
    Ganai, N. A.
    Bovenhuis, H.
    van Arendonk, J. A. M.
    Visker, M. H. P. W.
    ANIMAL GENETICS, 2009, 40 (02) : 127 - 133
  • [38] INTERACTION OF CHLORHEXIDINE WITH BOVINE BETA-LACTOGLOBULIN-A AND BETA-LACTOGLOBULIN-B
    JACOBS, MP
    PREAUX, G
    ARCHIVES INTERNATIONALES DE PHYSIOLOGIE DE BIOCHIMIE ET DE BIOPHYSIQUE, 1982, 90 (03): : B122 - B123
  • [39] Structure and Dynamics of Calmodulin in Solution
    Wriggers, W.
    Mehler, E.
    Pitici, F.
    Weinstein, H.
    Biophysical Journal, 74 (04):
  • [40] Structure and dynamics of calmodulin in solution
    Wriggers, W
    Mehler, E
    Pitici, F
    Weinstein, H
    Schulten, K
    BIOPHYSICAL JOURNAL, 1998, 74 (04) : 1622 - 1639