Characterization of turbulence in the Mars plasma environment with MAVEN observations

被引:47
作者
Ruhunusiri, Suranga [1 ]
Halekas, J. S. [1 ]
Espley, J. R. [2 ]
Mazelle, C. [3 ,4 ]
Brain, D. [5 ]
Harada, Y. [6 ]
DiBraccio, G. A. [2 ]
Livi, R. [6 ]
Larson, D. E. [6 ]
Mitchell, D. L. [6 ]
Jakosky, B. M. [5 ]
Howes, G. G. [1 ]
机构
[1] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[2] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[3] CNRS, IRAP, Toulouse, France
[4] Paul Sabatier Univ, Dept Phys, Toulouse, France
[5] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA
[6] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
MAGNETIC-FIELD FLUCTUATIONS; SOLAR-WIND; INTERSTELLAR TURBULENCE; MARTIAN MAGNETOSPHERE; MHD TURBULENCE; WAVES; MAGNETOSHEATH; WEAK; UPSTREAM; DISSIPATION;
D O I
10.1002/2016JA023456
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We characterize turbulence in the Mars plasma environment in a global scale for the first time by computing spectral indices for magnetic field fluctuations (slopes in the magnetic field power spectra) and determining how they vary with frequency and in different regions. In the magnetosheath, unlike in the solar wind, we find an absence of the inertial range which has a spectral index value equal to the Kolmogorov scaling value of -5/3. Instead, as observed in the magnetosheaths of other planets, we find that the spectral indices transition from low negative values close to -0.5 at low frequencies (< proton gyrofrequency) to values much lower than -5/3 at high frequencies (> proton gyrofrequency). This indicates that the pristine solar wind is modified at the Martian bow shock and that the fluctuations are dominated by locally generated fluctuations in the magnetosheath. The absence of spectral indices with the Kolmogorov scaling value indicates that the fluctuations in the magnetosheath do not have sufficient time to interact with one another leading to a fully developed energy cascade. Spectral index values near the Kolmogorov scaling value are observed for the low-frequency range near the magnetic pileup boundary, and this indicates the presence of fully developed energy cascade. In the wake, we find that the spectral indices have approximately the same values, typically near -2, for both the low-and high-frequency ranges. We observe seasonal variations of the spectral indices, mainly in the upstream region, which indicate the seasonal variations of the proton cyclotron waves.
引用
收藏
页码:656 / 674
页数:19
相关论文
共 50 条
[21]   On the Growth and Development of Non-Linear Kelvin-Helmholtz Instability at Mars: MAVEN Observations [J].
Poh, Gangkai ;
Espley, Jared R. ;
Nykyri, Katariina ;
Fowler, Christopher M. ;
Ma, Xuanye ;
Xu, Shaosui ;
Hanley, Gwen ;
Romanelli, Norberto ;
Bowers, Charles ;
Gruesbeck, Jacob ;
DiBraccio, Gina A. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2021, 126 (09)
[22]   Editorial: Advances in Space Plasma Turbulence: Theory and Observations [J].
Perri, Silvia ;
Sorriso-Valvo, Luca ;
Tenerani, Anna ;
Hellinger, Petr .
FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2021, 8
[23]   Anisotropy in Space Plasma Turbulence: Solar Wind Observations [J].
Horbury, T. S. ;
Wicks, R. T. ;
Chen, C. H. K. .
SPACE SCIENCE REVIEWS, 2012, 172 (1-4) :325-342
[24]   Martian electron foreshock from MAVEN observations [J].
Meziane, K. ;
Mazelle, C. X. ;
Romanelli, N. ;
Mitchell, D. L. ;
Espley, J. R. ;
Connerney, J. E. P. ;
Hamza, A. M. ;
Halekas, J. ;
McFadden, J. P. ;
Jakosky, B. M. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (02) :1531-1541
[25]   Electron Densities in the Ionosphere of Mars: Comparison of MAVEN/ROSE and MAVEN/LPW Measurements [J].
Felici, M. ;
Withers, P. ;
Vogt, M. F. ;
Hensley, K. G. ;
Andersson, L. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2022, 127 (04)
[26]   Impact of interplanetary shock on parameters of plasma turbulence in the Earth's magnetosheath [J].
Rakhmanova, L. S. ;
Riazantseva, M. O. ;
Borodkova, N. L. ;
Sapunova, O. V. ;
Zastenker, G. N. .
GEOMAGNETISM AND AERONOMY, 2017, 57 (06) :664-671
[27]   MAVEN insights into oxygen pickup ions at Mars [J].
Rahmati, A. ;
Larson, D. E. ;
Cravens, T. E. ;
Lillis, R. J. ;
Dunn, P. A. ;
Halekas, J. S. ;
Connerney, J. E. ;
Eparvier, F. G. ;
Thiemann, E. M. B. ;
Jakosky, B. M. .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (21) :8870-8876
[28]   Rosetta and Mars Express observations of the influence of high solar wind pressure on the Martian plasma environment [J].
Edberg, N. J. T. ;
Auster, U. ;
Barabash, S. ;
Boesswetter, A. ;
Brain, D. A. ;
Burch, J. L. ;
Carr, C. M. ;
Cowley, S. W. H. ;
Cupido, E. ;
Duru, F. ;
Eriksson, A. I. ;
Fraenz, M. ;
Glassmeier, K. -H. ;
Goldstein, R. ;
Lester, M. ;
Lundin, R. ;
Modolo, R. ;
Nilsson, H. ;
Richter, I. ;
Samara, M. ;
Trotignon, J. G. .
ANNALES GEOPHYSICAE, 2009, 27 (12) :4533-4545
[29]   The Mars Atmosphere and Volatile Evolution (MAVEN) Mission [J].
Jakosky, B. M. ;
Lin, R. P. ;
Grebowsky, J. M. ;
Luhmann, J. G. ;
Mitchell, D. F. ;
Beutelschies, G. ;
Priser, T. ;
Acuna, M. ;
Andersson, L. ;
Baird, D. ;
Baker, D. ;
Bartlett, R. ;
Benna, M. ;
Bougher, S. ;
Brain, D. ;
Carson, D. ;
Cauffman, S. ;
Chamberlin, P. ;
Chaufray, J. -Y. ;
Cheatom, O. ;
Clarke, J. ;
Connerney, J. ;
Cravens, T. ;
Curtis, D. ;
Delory, G. ;
Demcak, S. ;
DeWolfe, A. ;
Eparvier, F. ;
Ergun, R. ;
Eriksson, A. ;
Espley, J. ;
Fang, X. ;
Folta, D. ;
Fox, J. ;
Gomez-Rosa, C. ;
Habenicht, S. ;
Halekas, J. ;
Holsclaw, G. ;
Houghton, M. ;
Howard, R. ;
Jarosz, M. ;
Jedrich, N. ;
Johnson, M. ;
Kasprzak, W. ;
Kelley, M. ;
King, T. ;
Lankton, M. ;
Larson, D. ;
Leblanc, F. ;
Lefevre, F. .
SPACE SCIENCE REVIEWS, 2015, 195 (1-4) :3-48
[30]   Plasma Turbulence at Comet 67P/Churyumov-Gerasimenko: Rosetta Observations [J].
Ruhunusiri, S. ;
Howes, G. G. ;
Halekas, J. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (09)