Capillary waves at the liquid-vapor interface and the surface tension of water

被引:159
作者
Ismail, Ahmed E. [1 ]
Grest, Gary S. [1 ]
Stevens, Mark J. [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
关键词
D O I
10.1063/1.2209240
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Capillary waves occurring at the liquid-vapor interface of water are studied using molecular dynamics simulations. In addition, the surface tension, determined thermodynamically from the difference in the normal and tangential pressure at the liquid-vapor interface, is compared for a number of standard three- and four-point water models. We study four three-point models (SPC/E, TIP3P, TIP3P-CHARMM, and TIP3P-Ew) and two four-point models (TIP4P and TIP4P-Ew). All of the models examined underestimate the surface tension; the TIP4P-Ew model comes closest to reproducing the experimental data. The surface tension can also be determined from the amplitude of capillary waves at the liquid-vapor interface by varying the surface area of the interface. The surface tensions determined from the amplitude of the logarithmic divergence of the capillary interfacial width and from the traditional thermodynamic method agree only if the density profile is fitted to an error function instead of a hyperbolic tangent function.
引用
收藏
页数:10
相关论文
共 54 条
[1]   MOLECULAR-DYNAMICS SIMULATIONS OF WETTING AND DRYING IN LJ MODELS OF SOLID FLUID INTERFACES IN THE PRESENCE OF LIQUID VAPOR COEXISTENCE [J].
ADAMS, P ;
HENDERSON, JR .
MOLECULAR PHYSICS, 1991, 73 (06) :1383-1399
[2]   MOLECULAR-DYNAMICS SIMULATION OF THE ORTHOBARIC DENSITIES AND SURFACE-TENSION OF WATER [J].
ALEJANDRE, J ;
TILDESLEY, DJ ;
CHAPELA, GA .
JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (11) :4574-4583
[3]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[4]  
BERENDSEN HJC, 1980, INTERMOLECULAR FORCE, P331
[5]   A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions [J].
Bernal, JD ;
Fowler, RH .
JOURNAL OF CHEMICAL PHYSICS, 1933, 1 (08) :515-548
[6]   THICKNESS OF FLUID INTERFACES NEAR THE CRITICAL-POINT FROM OPTICAL REFLECTIVITY MEASUREMENTS [J].
BEYSENS, D ;
ROBERT, M .
JOURNAL OF CHEMICAL PHYSICS, 1987, 87 (05) :3056-3061
[7]   TAIL CORRECTIONS TO THE SURFACE-TENSION OF A LENNARD-JONES LIQUID-VAPOR INTERFACE [J].
BLOKHUIS, EM ;
BEDEAUX, D ;
HOLCOMB, CD ;
ZOLLWEG, JA .
MOLECULAR PHYSICS, 1995, 85 (03) :665-669
[8]   INTERFACIAL DENSITY PROFILE FOR FLUIDS IN CRITICAL REGION [J].
BUFF, FP ;
LOVETT, RA ;
STILLINGER, FH .
PHYSICAL REVIEW LETTERS, 1965, 15 (15) :621-+
[9]   COMPUTER-SIMULATION OF A GAS-LIQUID SURFACE .1. [J].
CHAPELA, GA ;
SAVILLE, G ;
THOMPSON, SM ;
ROWLINSON, JS .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS II, 1977, 73 :1133-1144
[10]   TEMPERATURE DEPENDENCE OF SURFACE-TENSION OF WATER BY EQUILIBRIUM RING METHOD [J].
CINI, R ;
LOGLIO, G ;
FICALBI, A .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1972, 41 (02) :287-&