Anti-windup synthesis via sampled-data piecewise affine optimal control

被引:30
作者
Bemporad, A
Teel, AR
Zaccarian, L
机构
[1] Univ Roma Tor Vergata, Dipartimento Informat Sistemi & Prod, I-00133 Rome, Italy
[2] Univ Siena, Dipartimento Ingn Informaz, I-53100 Siena, Italy
[3] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
关键词
anti-windup design; input saturation; sampled-data systems; piecewise affine systems;
D O I
10.1016/j.automatica.2003.11.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Discrete-time receding horizon optimal control is employed in model-based anti-windup augmentation. The optimal control formulation enables designs that minimize the mismatch between the unconstrained closed-loop response with a given controller and the constrained closed-loop response with anti-windup augmentation. Recently developed techniques for off-line computation of the constrained linear regulator's solution, which is piecewise affine, facilitate implementation. The resulting sampled-data, anti-windup closed-loop system's properties are established and its performance is demonstrated on a simulation example. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:549 / 562
页数:14
相关论文
共 36 条
[1]  
[Anonymous], T ASME
[2]  
BARBU C, 2001, ACTUATOR SATURATION
[3]   The explicit linear quadratic regulator for constrained systems [J].
Bemporad, A ;
Morari, M ;
Dua, V ;
Pistikopoulos, EN .
AUTOMATICA, 2002, 38 (01) :3-20
[4]   Nonlinear control of constrained linear systems via predictive reference management [J].
Bemporad, A ;
Casavola, A ;
Mosca, E .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (03) :340-349
[5]  
Borrelli F, 2001, IEEE DECIS CONTR P, P1187, DOI 10.1109/CDC.2001.981046
[6]   INPUT OUTPUT STABILITY OF SAMPLED-DATA SYSTEMS [J].
CHEN, T ;
FRANCIS, BA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (01) :50-58
[7]   On constrained infinite-time linear quadratic optimal control [J].
Chmielewski, D ;
Manousiouthakis, V .
SYSTEMS & CONTROL LETTERS, 1996, 29 (03) :121-129
[8]   SUBGRADIENT CRITERIA FOR MONOTONICITY, THE LIPSCHITZ CONDITION, AND CONVEXITY [J].
CLARKE, FH ;
STERN, RJ ;
WOLENSKI, PR .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (06) :1167-1183
[9]  
Davison E. J., 1990, BENCHMARK PROBLEMS C
[10]   An anti-windup scheme with closed-loop stability considerations [J].
Edwards, C ;
Postlethwaite, I .
AUTOMATICA, 1999, 35 (04) :761-765