Neighbor sum distinguishing total choosability of 1-planar graphs with maximum degree at least 24

被引:10
作者
Sun, Lin [1 ]
Yu, Guanglong [1 ]
Li, Xin [1 ]
机构
[1] Lingnan Normal Univ, Sch Math & Stat, Zhanjiang 524000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
1-planar graph; List neighbor sum distinguishing total coloring; Discharging method; DISTINGUISHING TOTAL COLORINGS; PLANAR GRAPHS;
D O I
10.1016/j.disc.2020.112190
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a simple graph G, a neighbor sum distinguishing total k-coloring of G is a mapping phi: V(G)boolean OR E(G) -> {1, 2, . . . , k} such that no two adjacent or incident elements in V(G)boolean OR E(G) receive the same color and w phi(u) not equal w phi(v) for each edge uv is an element of E(G), where w phi(v) (or w phi(u)) denotes the sum of the color of v (or u) and the colors of all edges incident with v (or u). For each element x is an element of V(G)boolean OR E(G), let L(x) be a list of integer numbers. If, whenever we give a list assignment L = {L(x)parallel to L(x)vertical bar= k, x is an element of V(G)boolean OR E(G)}, there exists a neighbor sum distinguishing total k-coloring phi such that phi(x) is an element of L(x) for each element x is an element of V(G)boolean OR E(G), then we say that phi is a list neighbor sum distinguishing total k-coloring. The smallest k for which such a coloring exists is called the neighbor sum distinguishing total choosability of G, denoted by ch(Sigma)''. A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. There is almost no result yet about ch(Sigma)''(G) if G is a 1-planar graph. We prove that ch(Sigma)''(G) <= Delta + 3 for every 1-planar graph G with maximum degree Delta >= 24. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 27 条
  • [1] Combinatorial Nullstellensatz
    Alon, N
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2) : 7 - 29
  • [2] [Anonymous], 2008, ELECTRON J COMB
  • [3] Additive Coloring of Planar Graphs
    Bartnicki, Tomasz
    Bosek, Bartlomiej
    Czerwinski, Sebastian
    Grytczuk, Jaroslaw
    Matecki, Grzegorz
    Zelazny, Wiktor
    [J]. GRAPHS AND COMBINATORICS, 2014, 30 (05) : 1087 - 1098
  • [4] Bondy J.A., 2007, Graph Theory
  • [5] Neighbor Sum (Set) Distinguishing Total Choosability Via the Combinatorial Nullstellensatz
    Ding, Laihao
    Wang, Guanghui
    Wu, Jianliang
    Yu, Jiguo
    [J]. GRAPHS AND COMBINATORICS, 2017, 33 (04) : 885 - 900
  • [6] Neighbor sum distinguishing total colorings via the Combinatorial Nullstellensatz
    Ding LaiHao
    Wang GuangHui
    Yan GuiYing
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (09) : 1875 - 1882
  • [7] Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree
    Dong, Ai Jun
    Wang, Guang Hui
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (04) : 703 - 709
  • [8] Neighbor Sum Distinguishing Index
    Flandrin, Evelyne
    Marczyk, Antoni
    Przybylo, Jakub
    Sacle, Jean-Francois
    Wozniak, Mariusz
    [J]. GRAPHS AND COMBINATORICS, 2013, 29 (05) : 1329 - 1336
  • [9] Weighted-1-antimagic graphs of prime power order
    Huang, Po-Yi
    Wong, Tsai-Lien
    Zhu, Xuding
    [J]. DISCRETE MATHEMATICS, 2012, 312 (14) : 2162 - 2169
  • [10] Vertex-coloring edge-weightings: Towards the 1-2-3-conjecture
    Kalkowski, Maciej
    Karonski, Michal
    Pfender, Florian
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (03) : 347 - 349