Hyperspectral Image Classification Using Spectral-Spatial Features With Informative Samples

被引:7
|
作者
Shu, Wen [1 ,2 ]
Liu, Peng [1 ]
He, Guojin [1 ]
Wang, Guizhou [1 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100094, Peoples R China
关键词
Active learning (AL); breaking ties (BT); mean shift (MS); extended multi-attribute morphological profiles (EMAPs); multinomial logistic regression (MLR); MORPHOLOGICAL ATTRIBUTE PROFILES;
D O I
10.1109/ACCESS.2019.2894766
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a new active-learning approach for multi-feature hyperspectral image classification. First, the extended multi-attribute morphological profiles (EMAPs) are introduced as features into the classifier of the multinomial logistic regression (MLR). Second, discontinuity preserving relaxation (DPR) is used to improve the precision of the labels predicted using the MLR classifier. Finally, in order to improve the efficiency of the training process using the EMAP-MLR-DPR classifier, we proposed selecting the informative training samples based on both the uncertainty and representativeness of the data. The breaking ties scheme is taken as the metric uncertainty of the samples, and the mean shift cluster is used to denote the representativeness of the unlabeled samples. The proposed method reasonably combines the spatial information and spectral information of hyperspectral data and effectively selects the key training samples with the most information. The effectiveness of the method is confirmed in the experiments on multiple hyperspectral data sets.
引用
收藏
页码:20869 / 20878
页数:10
相关论文
共 50 条
  • [41] Spectral-Spatial Pixel Characterization Using Gabor Filters for Hyperspectral Image Classification
    Rajadell, Olga
    Garcia-Sevilla, Pedro
    Pla, Filiberto
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (04) : 860 - 864
  • [42] Spectral-Spatial Hyperspectral Image Classification Using Superpixel and Extreme Learning Machines
    Duan, Wuhui
    Li, Shutao
    Fang, Leyuan
    PATTERN RECOGNITION (CCPR 2014), PT I, 2014, 483 : 159 - 167
  • [43] Spectral-spatial attention bilateral network for hyperspectral image classification
    Yang X.
    Chi Y.
    Zhou Y.
    Wang Y.
    National Remote Sensing Bulletin, 2023, 27 (11) : 2565 - 2578
  • [44] SPECTRAL-SPATIAL MULTISCALE RESIDUAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    He, Shi
    Jing, Haitao
    Xue, Huazhu
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 389 - 395
  • [45] Spectral-Spatial Morphological Attention Transformer for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Deria, Ankur
    Shah, Chiranjibi
    Haut, Juan M.
    Du, Qian
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [46] Spectral-Spatial Methods for Hyperspectral Image Classification. Review
    Borzov S.M.
    Potaturkin O.I.
    Optoelectronics, Instrumentation and Data Processing, 2018, 54 (6) : 582 - 599
  • [47] Multipath Residual Network for Spectral-Spatial Hyperspectral Image Classification
    Meng, Zhe
    Li, Lingling
    Tang, Xu
    Feng, Zhixi
    Jiao, Licheng
    Liang, Miaomiao
    REMOTE SENSING, 2019, 11 (16)
  • [48] Spectral-Spatial Classification of Hyperspectral Image Based on Discriminant Analysis
    Yuan, Haoliang
    Tang, Yuan Yan
    Lu, Yang
    Yang, Lina
    Luo, Huiwu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2035 - 2043
  • [49] Hyperspectral image classification using spectral-spatial hypergraph convolution neural network
    Ma, Zhongtian
    Jiang, Zhiguo
    Zhang, Haopeng
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVII, 2021, 11862
  • [50] Spectral-Spatial Global Graph Reasoning for Hyperspectral Image Classification
    Wang, Di
    Du, Bo
    Zhang, Liangpei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 12924 - 12937