Spatial Molecular Layer Deposition of Ultrathin Polyamide To Stabilize Silicon Anodes in Lithium-Ion Batteries

被引:21
作者
Wallas, Jasmine M. [1 ]
Welch, Brian C. [2 ]
Wang, Yikai [3 ]
Liu, Jun [4 ]
Hafner, Simon E. [2 ]
Qiao, Rui [5 ]
Yoon, Taeho [6 ]
Cheng, Yang-Tse [3 ]
George, Steven M. [1 ]
Ban, Chunmei [5 ]
机构
[1] Univ Colorado, Dept Chem, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
[3] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA
[4] Natl Renewable Energy Lab, Golden, CO 80401 USA
[5] Virginia Polytech Inst & State Univ, Dept Mech Engn, Blacksburg, VA 24060 USA
[6] Yeungnam Univ, Sch Chem Engn, Gyongsan 38541, South Korea
关键词
molecular layer deposition; surface modification; polyamide; silicon anodes; lithium-ion batteries; SOLID-ELECTROLYTE INTERPHASE; COMPOSITE ELECTRODES; NEGATIVE ELECTRODES; BINDER; SI; PERFORMANCE; MECHANISMS; CHEMISTRY;
D O I
10.1021/acsaem.9b00326
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cycling stability is central to implementing silicon (Si) anodes in next-generation high-energy lithium-ion batteries. However, challenges remain due to the lack of effective strategies to enhance the structural integrity of the anode during electrochemical cycling. Here, we develop a nanoscale polyamide coating, using spatial molecular layer deposition (MLD) of m-phenylenediamine and trimesoyl chloride precursors, to preserve the structural integrity of Si anodes. Poly(acrylic acid) (PAA) has been widely used in Si based anodes as a binding agent due to its effective binding interactions with Si particles. However, the structural integrity of the anode is compromised by thermochemical decomposition of the poly(acrylic acid) binder, which can occur during electrode drying or during electrochemical cycling. Decomposition causes a 62% decrease in the elastic modulus of the Si anode, as measured by nanoindentation in electrolyte-soaked conditions. This study shows that an ultrathin polyamide coating counteracts this structural degradation, increases the elastic modulus of the degraded anode by 345%, and improves cohesion. Electrochemical analysis of polyamide-coated anodes reveals a film thickness dependence in cycling behavior. High overpotentials and fast capacity fading are observed for Si anodes with a 15 nm coating, whereas Si anodes with a 0.5 nm coating demonstrate stable cycling over 150 cycles with a capacity >1400 mAh g(-1). Our findings identify polyamide as an effective electrode coating material to enhance structural integrity, leading to excellent cyclability with higher capacity retention. Furthermore, the use of the spatial MLD approach to deposit the coating enables short deposition time and a facile route to scale-up.
引用
收藏
页码:4135 / 4143
页数:17
相关论文
共 41 条
[1]   Molecular Layer Deposition for Surface Modification of Lithium-Ion Battery Electrodes [J].
Ban, Chunmei ;
George, Steven M. .
ADVANCED MATERIALS INTERFACES, 2016, 3 (21)
[2]   Electrical properties of modified aromatic polyamide membranes [J].
Benavente, J ;
DeAbajo, J ;
DelaCampa, JG ;
Garcia, JM .
SEPARATION SCIENCE AND TECHNOLOGY, 1997, 32 (13) :2189-2199
[3]   Systematic Investigation of Binders for Silicon Anodes: Interactions of Binder with Silicon Particles and Electrolytes and Effects of Binders on Solid Electrolyte Interphase Formation [J].
Cao Cuong Nguyen ;
Yoon, Taeho ;
Seo, Daniel M. ;
Guduru, Pradeep ;
Lucht, Brett L. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (19) :12211-12220
[4]   Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes [J].
Chan, Candace K. ;
Ruffo, Riccardo ;
Hong, Seung Sae ;
Cui, Yi .
JOURNAL OF POWER SOURCES, 2009, 189 (02) :1132-1140
[5]   Hierarchical Polyamide 6 (PA6) Nanofibrous Membrane with Desired Thickness as Separator for High-Performance Lithium-Ion Batteries [J].
Chen, Jiahui ;
Liu, Qiongzhen ;
Wang, Bo ;
Li, Fei ;
Jiang, Haiqing ;
Liu, Ke ;
Wang, Yuedan ;
Li, Mufang ;
Lu, Zhentan ;
Wang, Dong .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (07) :A1526-A1533
[6]   Enhanced electrochemical properties of a Si-based anode using an electrochemically active polyamide imide binder [J].
Choi, Nam-Soon ;
Yew, Kyoung Han ;
Choi, Wan-Uk ;
Kim, Sung-Soo .
JOURNAL OF POWER SOURCES, 2008, 177 (02) :590-594
[7]   Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition [J].
Elam, JW ;
Routkevitch, D ;
Mardilovich, PP ;
George, SM .
CHEMISTRY OF MATERIALS, 2003, 15 (18) :3507-3517
[8]   High-performance aromatic polyamides [J].
Garcia, Jose M. ;
Garcia, Felix C. ;
Serna, Felipe ;
de la Pena, Jose L. .
PROGRESS IN POLYMER SCIENCE, 2010, 35 (05) :623-686
[9]   Lithium - Air Battery: Promise and Challenges [J].
Girishkumar, G. ;
McCloskey, B. ;
Luntz, A. C. ;
Swanson, S. ;
Wilcke, W. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (14) :2193-2203
[10]   What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes? [J].
Hays, Kevin A. ;
Ruther, Rose E. ;
Kukay, Alexander J. ;
Cao, Pengfei ;
Saito, Tomonori ;
Wood, David L., III ;
Li, Jianlin .
JOURNAL OF POWER SOURCES, 2018, 384 :136-144