The feasibility of genome-scale biological network inference using Graphics Processing Units

被引:4
作者
Thiagarajan, Raghuram [1 ,2 ]
Alavi, Amir [2 ,4 ]
Podichetty, Jagdeep T. [2 ]
Bazil, Jason N. [2 ,3 ]
Beard, Daniel A. [2 ]
机构
[1] Pratt Miller Engn, WK Smith Dr, New Hudson, MI USA
[2] Univ Michigan, Dept Mol & Integrat Physiol, North Campus Res Complex, Ann Arbor, MI USA
[3] Michigan State Univ, Dept Physiol, 567 Wilson Rd, E Lansing, MI USA
[4] Carnegie Mellon Univ, Sch Comp Sci, Computat Biol Dept ment, 5000 Forbes Ave, Pittsburgh, PA USA
来源
ALGORITHMS FOR MOLECULAR BIOLOGY | 2017年 / 12卷
关键词
Network inference; Reverse engineering; Genetic regulatory networks; GPU; GENE; SIMULATIONS; TOOL;
D O I
10.1186/s13015-017-0100-5
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Systems research spanning fields from biology to finance involves the identification of models to represent the underpinnings of complex systems. Formal approaches for data-driven identification of network interactions include statistical inference-based approaches and methods to identify dynamical systems models that are capable of fitting multivariate data. Availability of large data sets and so-called 'big data' applications in biology present great opportunities as well as major challenges for systems identification/reverse engineering applications. For example, both inverse identification and forward simulations of genome-scale gene regulatory network models pose compute-intensive problems. This issue is addressed here by combining the processing power of Graphics Processing Units (GPUs) and a parallel reverse engineering algorithm for inference of regulatory networks. It is shown that, given an appropriate data set, information on genome-scale networks (systems of 1000 or more state variables) can be inferred using a reverseengineering algorithm in a matter of days on a small-scale modern GPU cluster.
引用
收藏
页数:13
相关论文
共 38 条
  • [1] Odeint - Solving Ordinary Differential Equations in C plus
    Ahnert, Karsten
    Mulansky, Mario
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [2] General purpose molecular dynamics simulations fully implemented on graphics processing units
    Anderson, Joshua A.
    Lorenz, Chris D.
    Travesset, A.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (10) : 5342 - 5359
  • [3] [Anonymous], 2010, Thrust: A parallel template library
  • [4] Bach F.R., 2008, P 25 INT C MACH LEAR, P33, DOI DOI 10.1145/1390156.1390161
  • [5] How to infer gene networks from expression profiles
    Bansal, Mukesh
    Belcastro, Vincenzo
    Ambesi-Impiombato, Alberto
    di Bernardo, Diego
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)
  • [6] The Inferred Cardiogenic Gene Regulatory Network in the Mammalian Heart
    Bazil, Jason N.
    Stamm, Karl D.
    Li, Xing
    Thiagarajan, Raghuram
    Nelson, Timothy J.
    Tomita-Mitchell, Aoy
    Beard, Daniel A.
    [J]. PLOS ONE, 2014, 9 (06):
  • [7] A parallel algorithm for reverse engineering of biological networks
    Bazil, Jason N.
    Qi, Feng
    Beard, Daniel A.
    [J]. INTEGRATIVE BIOLOGY, 2011, 3 (12) : 1215 - 1223
  • [8] Big Data Analytics in Healthcare
    Belle, Ashwin
    Thiagarajan, Raghuram
    Soroushmehr, S. M. Reza
    Navidi, Fatemeh
    Beard, Daniel A.
    Najarian, Kayvan
    [J]. BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [9] FastMEDUSA: a parallelized tool to infer gene regulatory networks
    Bozdag, Serdar
    Li, Aiguo
    Wuchty, Stefan
    Fine, Howard A.
    [J]. BIOINFORMATICS, 2010, 26 (14) : 1792 - 1793
  • [10] GPU computing for systems biology
    Dematte, Lorenzo
    Prandi, Davide
    [J]. BRIEFINGS IN BIOINFORMATICS, 2010, 11 (03) : 323 - 333