A SEVERI TYPE THEOREM FOR SURFACES IN P6

被引:1
作者
De Poi, Pietro [1 ]
Ilardi, Giovanna [2 ]
机构
[1] Univ Udine, Dipartimento Sci Matemat Informat & Fis, Via Sci 206, I-33100 Udine, Italy
[2] Univ Napoli Federico II, Dipartimento Matemat & Applicaz Renato Caccioppol, Via Cinthia, I-80126 Naples, Italy
关键词
VARIETIES;
D O I
10.1090/proc/15263
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X subset of P-N be a projective, non-degenerate, irreducible smooth variety of dimension n. After giving the definition of generalised OADP-variety (one apparent double point), i.e. varieties X such that: n(k + 1) - (N - r)(k - r) + r = N, there is one apparent (k + 1)-secant (r- 1)-space to a generic projection of X from a point, we concentrate in studying generalised OADP-surfaces in low dimensional projective spaces, and the main result of this paper is the classification of smooth surfaces in P-6 with one 4-secant plane through the general point of P-6.
引用
收藏
页码:591 / 605
页数:15
相关论文
共 17 条
[1]  
[Anonymous], 1985, MAT SB
[2]   Varieties with minimal secant degree and linear systems of maximal dimension on surfaces [J].
Ciliberto, C ;
Russo, F .
ADVANCES IN MATHEMATICS, 2006, 200 (01) :1-50
[3]  
Ciliberto C, 2004, J ALGEBRAIC GEOM, V13, P475
[4]   On the classification of OADP varieties [J].
Ciliberto, Ciro ;
Russo, Francesco .
SCIENCE CHINA-MATHEMATICS, 2011, 54 (08) :1561-1575
[5]   On first order congruences of lines in P4 with irreducible fundamental surface [J].
De Poi, P .
MATHEMATISCHE NACHRICHTEN, 2005, 278 (04) :363-378
[6]  
De Poi Pietro, 2007, REND I MAT U TRIESTE, V39, P177
[7]  
Fujita T., 1990, LONDON MATH SOC LECT, V155, DOI 10.1017/CBO9780511662638
[8]  
Fulton W., 1998, INTERSECTION THEORY, DOI [10.1007/978-1-4612-1700-8, DOI 10.1007/978-1-4612-1700-8]
[9]  
Griffiths Phillip, 1994, WILEY CLASSICS LIB
[10]  
IONESCU P, 1990, LECT NOTES MATH, V1417, P138