Boundary Lax pairs for the An(1) Toda field theories

被引:15
作者
Avan, Jean [2 ]
Doikou, Anastasia [1 ]
机构
[1] Univ Patras, Dept Engn Sci, GR-26500 Patras, Greece
[2] Univ Cergy Pontoise, LPTM, CNRS, UMR 8089, F-95302 Cergy Pontoise, France
关键词
ANALYTICAL BETHE-ANSATZ; ZERO-CURVATURE CONDITIONS; SINE-GORDON; SPIN CHAIN; ALGEBRA; EQUATIONS; SYMMETRY; MATRICES; MODEL;
D O I
10.1016/j.nuclphysb.2009.05.010
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Based on the recent formulation of a general scheme to construct boundary Lax pairs. we develop this systematic construction for the A(n)((1)) affine Toda field theories (ATFT). We work out explicitly the first two models of the hierarchy, i.e. the sine-Gordon (A(1)((1))) and the A(2)((1)) models. The A(2)((1)) Toda theory is the first non-trivial example of the hierarchy that exhibits two distinct types of boundary conditions. We provide here novel expressions of boundary Lax pairs associated to both types of boundary conditions. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:481 / 505
页数:25
相关论文
共 50 条
[21]   AN-1 conformal Toda field theory correlation functions from conformal N=2 SU(N) quiver gauge theories [J].
Wyllard, Niclas .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (11)
[22]   Cyclic gradings of Lie algebras and lax pairs for σ-models [J].
D. V. Bykov .
Theoretical and Mathematical Physics, 2016, 189 :1734-1741
[23]   Line operators in theories of class S, quantized moduli space of flat connections, and Toda field theory [J].
Coman, Ioana ;
Gabella, Maxime ;
Teschner, Joerg .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (10)
[24]   Classical integrable systems and gauge field theories [J].
Olshanetsky, M. .
PHYSICS OF PARTICLES AND NUCLEI, 2009, 40 (01) :93-114
[25]   Hamel's Formalism for Classical Field Theories [J].
Shi, Donghua ;
Zenkov, Dmitry V. ;
Bloch, Anthony M. .
JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (04) :1307-1353
[26]   On the Lax representation of the 2-component KP and 2D Toda hierarchies [J].
Carlet, Guido ;
Manas, Manuel .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (43)
[27]   Lax-type pairs in the theory of bivariate orthogonal polynomials [J].
Branquinho, Amilcar ;
Foulquie-Moreno, Ana ;
Perez, Teresa E. ;
Pinar, Miguel A. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 721 :219-239
[28]   N=2 gauge theories and degenerate fields of Toda theory [J].
Kanno, Shoichi ;
Matsuo, Yutaka ;
Shiba, Shotaro ;
Tachikawa, Yuji .
PHYSICAL REVIEW D, 2010, 81 (04)
[29]   ZN graded discrete Lax pairs and Yang-Baxter maps [J].
Fordy, Allan P. ;
Xenitidis, Pavlos .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2201)
[30]   Coupled five-point lattices: Lax pairs and Hamiltonian structures [J].
Jia, Minxin ;
Geng, Xianguo .
APPLIED MATHEMATICS LETTERS, 2025, 164