Lower bounds of Nikiforov's energy over digraphs

被引:15
作者
Agudelo, Natalia [1 ]
Rada, Juan [1 ]
机构
[1] Univ Antioquia, Inst Matemat, Medellin, Colombia
关键词
Digraphs; Energy; Eigenvalues; Singular values; Lower bounds;
D O I
10.1016/j.laa.2016.01.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The energy of a graph G is defined as E(G) = Sigma(n)(i=1) vertical bar lambda(i)vertical bar, where lambda(1), lambda(2), ..., lambda(n) are the eigenvalues of the adjacency matrix of G. This concept was extended by Nikiforov [8] to digraphs as N (D) Sigma(n)(i=1) sigma(i), where D is a digraph with n vertices and singular values sigma(1), ..., sigma(n). Upper bounds of N were found by Kharaghani and Tayfeh-Rezaie [4]. In this work we find lower bounds of N over the set of digraphs. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:156 / 164
页数:9
相关论文
共 11 条
  • [1] An upper bound for the energy of radial digraphs
    Cruz, Roberto
    Giraldo, Hernan
    Rada, Juan
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 442 : 75 - 81
  • [2] CVETKOVI C D.M., 1980, Pure Appl. Math., V87
  • [3] Gutman I., 1978, Ber. Math. Stat. Sekt. Forschungsz. Graz., V103, P1, DOI DOI 10.1088/1742-5468/2008/10/P10008
  • [4] On the energy of (0,1)-matrices
    Kharaghani, H.
    Tayfeh-Rezaie, B.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (8-9) : 2046 - 2051
  • [5] Maximal energy graphs
    Koolen, JH
    Moulton, V
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2001, 26 (01) : 47 - 52
  • [6] Li X., 2012, Graph Energy
  • [7] Energy of a polynomial and the Coulson integral formula
    Mateljevic, Miodrag
    Bozin, Vladimir
    Gutman, Ivan
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 48 (04) : 1062 - 1068
  • [8] The energy of graphs and matrices
    Nikiforov, Vladimir
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) : 1472 - 1475
  • [9] Energy of digraphs
    Pena, Ismael
    Rada, Juan
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2008, 56 (05) : 565 - 579
  • [10] Bounds for the energy of normal digrahs
    Rada, Juan
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (03) : 323 - 332