Neural network modelling of the influence of channelopathies on reflex visual attention

被引:7
|
作者
Gravier, Alexandre [1 ]
Quek, Chai [2 ]
Duch, Wlodzislaw [3 ]
Wahab, Abdul [4 ]
Gravier-Rymaszewska, Joanna [5 ]
机构
[1] Nanyang Technol Univ, Ctr Computat Intelligence C2i, N4-B1A-02,Nanyang Ave, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Sch Comp Engn, Singapore 639798, Singapore
[3] Nicholas Copernicus Univ, Sch Phys Astron & Informat, Dept Informat, Torun, Poland
[4] Int Islamic Univ Malaysia, Sch Informat & Commun Technol, Kuala Lumpur, Malaysia
[5] Nanyang Technol Univ, Sch Humanities & Social Sci, Singapore 639798, Singapore
关键词
Calcium channelopathy; Visual attention; Autism; Neural network; Task learning; CALCIUM-CHANNELS; AUTISM; ABNORMALITIES; ACTIVATION; BRAIN; SYSTEM;
D O I
10.1007/s11571-015-9365-x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This paper introduces a model of Emergent Visual Attention in presence of calcium channelopathy (EVAC). By modelling channelopathy, EVAC constitutes an effort towards identifying the possible causes of autism. The network structure embodies the dual pathways model of cortical processing of visual input, with reflex attention as an emergent property of neural interactions. EVAC extends existing work by introducing attention shift in a larger-scale network and applying a phenomenological model of channelopathy. In presence of a distractor, the channelopathic network's rate of failure to shift attention is lower than the control network's, but overall, the control network exhibits a lower classification error rate. The simulation results also show differences in task-relative reaction times between control and channelopathic networks. The attention shift timings inferred from the model are consistent with studies of attention shift in autistic children.
引用
收藏
页码:49 / 72
页数:24
相关论文
共 50 条
  • [31] Neural network modelling of a depollution process
    J. P. Steyer
    C. Pelayo-Ortiz
    V. González-Alvarez
    B. Bonnet
    A. Bories
    Bioprocess Engineering, 2000, 23 : 727 - 730
  • [32] Neural network modelling by rank configurations
    Bykov, Mykola M.
    Kovtun, Viacheslav V.
    Raimy, Abdourahmane
    Gromaszek, Konrad
    Smailova, Saule
    PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS 2018, 2018, 10808
  • [33] The balance property in neural network modelling
    Wuethrich, Mario V.
    STATISTICAL THEORY AND RELATED FIELDS, 2022, 6 (01) : 1 - 9
  • [34] Neural network modelling of a depollution process
    Steyer, JP
    Pelayo-Ortiz, C
    González-Alvarez, V
    Bonnet, B
    Bories, A
    BIOPROCESS ENGINEERING, 2000, 23 (06) : 727 - 730
  • [35] Neural correlates of visual attention in alcohol use disorder
    Zehra, Amna
    Lindgren, Elsa
    Wiers, Corinde E.
    Freeman, Clara
    Miller, Gregg
    Ramirez, Veronica
    Shokri-Kojori, Ehsan
    Wang, Gene-Jack
    Talagala, Lori
    Tomasi, Dardo
    Volkow, Nora D.
    DRUG AND ALCOHOL DEPENDENCE, 2019, 194 : 430 - 437
  • [36] The Influence of Text-guidance on Visual Attention
    Sun, Yinan
    Min, Xiongkuo
    Duan, Huiyu
    Zhai, Guangtao
    2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [37] Hierarchical Attention Link Prediction Neural Network
    Wang, Zhitao
    Li, Wenjie
    Su, Hanjing
    KNOWLEDGE-BASED SYSTEMS, 2021, 232
  • [38] The Putative Visual Word Form Area Is Functionally Connected to the Dorsal Attention Network
    Vogel, Alecia C.
    Miezin, Fran M.
    Petersen, Steven E.
    Schlaggar, Bradley L.
    CEREBRAL CORTEX, 2012, 22 (03) : 537 - 549
  • [39] Attention Awareness Multiple Instance Neural Network
    Yi, Jingjun
    Zhou, Beichen
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT III, 2022, 13531 : 581 - 592
  • [40] Multiobjective visual evolutionary neural network and related convolutional neural network optimization
    Zhang, Zhuhong
    Li, Lun
    Lu, Jiaxuan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 243