YOLO-based Threat Object Detection in X-ray Images

被引:5
作者
Galvez, Reagan L. [1 ,3 ]
Dadios, Elmer P. [2 ]
Bandala, Argel A. [1 ]
Vicerra, Ryan Rhay P. [2 ]
机构
[1] De La Salle Univ, Elect & Commun Engn Dept, Manila, Philippines
[2] De La Salle Univ, Mfg Engn & Management Dept, Manila, Philippines
[3] Bulacan State Univ, Elect & Commun Engn Dept, Malolos, Philippines
来源
2019 IEEE 11TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT, AND MANAGEMENT (HNICEM) | 2019年
关键词
automated detection; convolutional neural networks; threat object; transfer learning; X-ray image; YOLO;
D O I
10.1109/hnicem48295.2019.9073599
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Manual detection of threat objects in an X-ray machine is a tedious task for the baggage inspectors in airports, train stations, and establishments. Objects inside the baggage seen by the X-ray machine are commonly occluded and difficult to recognize when rotated. Because of this, there is a high chance of missed detection, particularly during rush hour. As a solution, this paper presents a You Only Look Once (YOLO)-based object detector for the automated detection of threat objects in an X-ray image. The study compared the performance between using transfer learning and training from scratch in an IEDXray dataset which composed of scanned X-ray images of improvised explosive device (IED) replicas. The results of this research indicate that training YOLO from scratch beats transfer learning in quick detection of threat objects. Training from scratch achieved a mean average precision (mAP) of 45.89% in 416x416 image, 51.48% in 608x608 image, and 52.40% in a multi-scale image. On the other hand, using transfer learning achieved only an mAP of 29.54% while 29.17% mAP in a multi-scale image.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Threat Object Classification in X-ray Images Using Transfer Learning
    Galvez, Reagan L.
    Dadios, Elmer P.
    Bandala, Argel A.
    Vicerra, Ryan Rhay P.
    2018 IEEE 10TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2018,
  • [2] YOLO-based Object Detection Models: A Review and its Applications
    Vijayakumar, Ajantha
    Vairavasundaram, Subramaniyaswamy
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (35) : 83535 - 83574
  • [3] RescueNet: YOLO-based object detection model for detection and counting of flood survivors
    B. V. Balaji Prabhu
    R. Lakshmi
    R. Ankitha
    M. S. Prateeksha
    N. C. Priya
    Modeling Earth Systems and Environment, 2022, 8 : 4509 - 4516
  • [4] RescueNet: YOLO-based object detection model for detection and counting of flood survivors
    Prabhu, B. V. Balaji
    Lakshmi, R.
    Ankitha, R.
    Prateeksha, M. S.
    Priya, N. C.
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (04) : 4509 - 4516
  • [5] YOLO-Based Object Detection in Industry 4.0 Fischertechnik Model Environment
    Schneidereit, Slavomira
    Yarahmadi, Ashkan Mansouri
    Schneidereit, Toni
    Breuss, Michael
    Gebauer, Marc
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, INTELLISYS 2023, 2024, 823 : 1 - 20
  • [6] YOLO-based microglia activation state detection
    Liu, Jichi
    Li, Wei
    Lyu, Houkun
    Qi, Feng
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (16) : 24413 - 24434
  • [7] YOLO-Based Models for Smoke and Wildfire Detection in Ground and Aerial Images
    Goncalves, Leon Augusto Okida
    Ghali, Rafik
    Akhloufi, Moulay A.
    FIRE-SWITZERLAND, 2024, 7 (04):
  • [8] WD-YOLO: A More Accurate YOLO for Defect Detection in Weld X-ray Images
    Pan, Kailai
    Hu, Haiyang
    Gu, Pan
    SENSORS, 2023, 23 (21)
  • [9] Detection and classification of shoulder implants from X-ray images: YOLO and pre- trained convolution neural network based approach
    Karaci, Abdulkadir
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2022, 37 (01): : 283 - 294
  • [10] YOLO-Based Object Detection and Tracking for Autonomous Vehicles Using Edge Devices
    Azevedo, Pedro
    Santos, Vitor
    ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1, 2023, 589 : 297 - 308