Steiner Distance in Join, Corona, Cluster, and Threshold Graphs

被引:4
作者
Wang, Zhao [1 ]
Mao, Yaping [2 ]
Melekian, Christopher [3 ]
Cheng, Eddie [3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Qinghai Normal Univ, Dept Math, Xining 810008, Qinghai, Peoples R China
[3] Oakland Univ, Dept Math & Stat, Oakland, MI 48309 USA
基金
美国国家科学基金会;
关键词
wireless sensor networks; localization; mobile beacon; mobile anchor; RSSI; DIAMETER;
D O I
10.6688/JISE.201907_35(4).0001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For a connected graph G and a subset S of its vertices, the Steiner tree problem consists of finding a minimum-size connected subgraph containing S. The Steiner distance of S is the size of a Steiner tree for S, and the Steiner k-diameter of G is the maximum value of the Steiner distance over all vertex subsets S of cardinality k. Calculation of Steiner trees and Steiner distance is known to be NP-hard in general, so applications may benefit from using graphs where the Steiner distance and structure of Steiner trees are known. In this paper, we investigate the Steiner distance and Steiner k-diameter of the join, corona, and cluster of connected graphs, as well as threshold graphs.
引用
收藏
页码:721 / 735
页数:15
相关论文
共 17 条
  • [1] Upper bounds on the Steiner diameter of a graph
    Ali, Patrick
    Dankelmann, Peter
    Mukwembi, Simon
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (12) : 1845 - 1850
  • [2] Bondy J. A., 2008, GRAPH THEORY GTM
  • [3] Buckley F., 1990, Distance in Graphs
  • [4] Steiner distance and convexity in graphs
    Caceres, J.
    Marquez, A.
    Puertas, M. L.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (03) : 726 - 736
  • [5] Rainbow Trees in Graphs and Generalized Connectivity
    Chartrand, Gary
    Okamoto, Futaba
    Zhang, Ping
    [J]. NETWORKS, 2010, 55 (04) : 360 - 367
  • [6] Chartrand Gary., 1989, asopis P st. Mat, V114, P399
  • [7] Chung FRK., 1987, P 18 S E C COMB GRAP, P295
  • [8] Dankelmann Peter., 1999, Combinatorics, graph theory, and algorithms, Vol. I, II (Kalamazoo, MI, VI, P269
  • [9] The cross product of interconnection networks
    Day, K
    AlAyyoub, AE
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1997, 8 (02) : 109 - 118
  • [10] Godsil CD., 1978, B AUST MATH SOC, V18, P21, DOI [10.1017/S0004972700007760 0376.05049, DOI 10.1017/S0004972700007760]