Numerical solution of singularly perturbed two-point boundary value problems by spline in tension

被引:18
作者
Kadalbajoo, MK [1 ]
Patidar, KC [1 ]
机构
[1] Indian Inst Technol, Dept Math, Kanpur 208016, Uttar Pradesh, India
关键词
singular perturbation; BVPs; ODES; spline in tension;
D O I
10.1016/S0096-3003(01)00146-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some difference schemes for singularly perturbed two-point boundary value problems are derived using spline in tension. These schemes are second-order accurate. Numerical examples are given in support of the theoretical results. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:299 / 320
页数:22
相关论文
共 14 条
[1]   DIFFERENCE APPROXIMATIONS FOR SINGULAR PERTURBATIONS OF SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS [J].
ABRAHAMSSON, LR ;
KELLER, HB ;
KREISS, HO .
NUMERISCHE MATHEMATIK, 1974, 22 (05) :367-391
[2]  
[Anonymous], APPL MATH SCI SERIES
[3]  
BERGER AE, 1981, MATH COMPUT, V37, P79, DOI 10.1090/S0025-5718-1981-0616361-0
[4]   A HYBRID ASYMPTOTIC-FINITE ELEMENT METHOD FOR STIFF 2-POINT BOUNDARY-VALUE-PROBLEMS [J].
CHIN, RCY ;
KRASNY, R .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1983, 4 (02) :229-243
[5]  
DEGROEN PPN, 1979, NUMERICAL ANAL SINGU, P217
[6]  
Doolan E.P., 1980, Uniform Numerical Methods for Problems with Initial and Boundary Layers
[7]  
EUGENE CG, 1987, MATH COMPUT, V48, P551
[8]  
KELLOGG RB, 1978, MATH COMPUT, V32, P1025, DOI 10.1090/S0025-5718-1978-0483484-9
[9]  
KREISS B, 1982, SIAM J NUMER ANAL, V46, P138
[10]  
LORENZ J, 1979, NUMERICAL ANAL SINGU, P295