Spectral-Spatial Discriminant Feature Learning for Hyperspectral Image Classification

被引:5
作者
Dong, Chunhua [1 ]
Naghedolfeizi, Masoud [1 ]
Aberra, Dawit [1 ]
Zeng, Xiangyan [1 ]
机构
[1] Ft Valley State Univ, Dept Math & Comp Sci, Ft Valley, GA 31030 USA
关键词
hyperspectral image; image classification; dimension reduction; discriminant feature; sparse representation; FEATURE-SELECTION; ANOMALY DETECTION; FEATURE-EXTRACTION; SPARSE REPRESENTATION; DECOMPOSITION; ALGORITHM; FUSION;
D O I
10.3390/rs11131552
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sparse representation classification (SRC) is being widely applied to target detection in hyperspectral images (HSI). However, due to the problem in HSI that high-dimensional data contain redundant information, SRC methods may fail to achieve high classification performance, even with a large number of spectral bands. Selecting a subset of predictive features in a high-dimensional space is an important and challenging problem for hyperspectral image classification. In this paper, we propose a novel discriminant feature learning (DFL) method, which combines spectral and spatial information into a hypergraph Laplacian. First, a subset of discriminative features is selected, which preserve the spectral structure of data and the inter- and intra-class constraints on labeled training samples. A feature evaluator is obtained by semi-supervised learning with the hypergraph Laplacian. Secondly, the selected features are mapped into a further lower-dimensional eigenspace through a generalized eigendecomposition of the Laplacian matrix. The finally extracted discriminative features are used in a joint sparsity-model algorithm. Experiments conducted with benchmark data sets and different experimental settings show that our proposed method increases classification accuracy and outperforms the state-of-the-art HSI classification methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Spectral-spatial classification of hyperspectral image based on discriminant sparsity preserving embedding
    Han, Min
    Zhang, Chengkun
    NEUROCOMPUTING, 2017, 243 : 133 - 141
  • [2] Spectral-Spatial Classification of Hyperspectral Image Based on Discriminant Analysis
    Yuan, Haoliang
    Tang, Yuan Yan
    Lu, Yang
    Yang, Lina
    Luo, Huiwu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2035 - 2043
  • [3] Multiscale spectral-spatial feature learning for hyperspectral image classification
    Sohail, Muhammad
    Chen, Zhao
    Yang, Bin
    Liu, Guohua
    DISPLAYS, 2022, 74
  • [4] Spectral-Spatial Active Learning With Structure Density for Hyperspectral Classification
    Li, Qianming
    Zheng, Bohong
    Yang, Yusheng
    IEEE ACCESS, 2021, 9 : 61793 - 61806
  • [5] Unsupervised Spectral-Spatial Semantic Feature Learning for Hyperspectral Image Classification
    Xu, Huilin
    He, Wei
    Zhang, Liangpei
    Zhang, Hongyan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] Hyperspectral Image Classification Based on Spectral-Spatial Feature Extraction
    Ye, Zhen
    Tan, Lian
    Bai, Lin
    2017 INTERNATIONAL WORKSHOP ON REMOTE SENSING WITH INTELLIGENT PROCESSING (RSIP 2017), 2017,
  • [7] Spectral-Spatial Linear Discriminant Analysis for Hyperspectral Image Classification
    Yuan, Haoliang
    Lu, Yang
    Yang, Lina
    Luo, Huiwu
    Tang, Yuan Yan
    2013 IEEE INTERNATIONAL CONFERENCE ON CYBERNETICS (CYBCONF), 2013,
  • [8] Discriminating Spectral-Spatial Feature Extraction for Hyperspectral Image Classification: A Review
    Li, Ningyang
    Wang, Zhaohui
    Cheikh, Faouzi Alaya
    SENSORS, 2024, 24 (10)
  • [9] Joint spectral-spatial hyperspectral image classification based on hierarchical subspace switch ensemble learning algorithm
    Li, Yongming
    Xie, Tingjie
    Wang, Pin
    Wang, Jie
    Liu, Shujun
    Zhou, Xichuan
    Zhang, Xinzheng
    APPLIED INTELLIGENCE, 2018, 48 (11) : 4128 - 4148
  • [10] Masked Spectral-Spatial Feature Prediction for Hyperspectral Image Classification
    Zhou, Feng
    Xu, Chao
    Yang, Guowei
    Hang, Renlong
    Liu, Qingshan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13