The Triple-Pair Construction for Weighted ω-Pushdown Automata

被引:2
作者
Droste, Manfred [1 ]
Esik, Zoltan [2 ]
Kuich, Werner [3 ]
机构
[1] Univ Leipzig, Inst Informat, Leipzig, Germany
[2] Univ Szeged, Dept Fdn Comp Sci, Szeged, Hungary
[3] Tech Univ Wien, Inst Diskrete Math & Geometrie, Vienna, Austria
来源
ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE | 2017年 / 252期
基金
奥地利科学基金会;
关键词
D O I
10.4204/EPTCS.252.12
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let S be a complete star-omega semiring and Sigma be an alphabet. For a weighted omega-pushdown automaton P with stateset {1,..., n}, n >= 1, we show that there exists a mixed algebraic system over a complete semiring-semimodule pair ((S << Sigma* >>)(nxn), (S << Sigma(omega) >>(n)) such that the behavior parallel to P parallel to of P is a component of a solution of this system. In case the basic semiring is B or N-infinity we show that there exists a mixed context-free grammar that generates parallel to P parallel to. The construction of the mixed context-free grammar from P is a generalization of the well known triple construction and is called now triple-pair construction for omega-pushdown automata.
引用
收藏
页码:101 / 113
页数:13
相关论文
共 14 条
  • [1] Bloom S. L., 1993, Iteration Theories, P159, DOI [DOI 10.1007/978-3-642-78034-9, 10.1007/978-3-642-78034-9_7, DOI 10.1007/978-3-642-78034-9_7]
  • [2] Bucher W., 1984, THEORETISCHE GRUNDLA
  • [3] THEORY OF OMEGA-LANGUAGES .1. CHARACTERIZATIONS OF OMEGA-CONTEXT-FREE LANGUAGES
    COHEN, RS
    GOLD, AY
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1977, 15 (02) : 169 - 184
  • [4] Conway J.H., 1971, Regular Algebra and Finite Machines
  • [5] Eilenberg S., 1974, PURE APPL MATH A, V59, DOI [10.1016/S0079-8169(08)60875-2, DOI 10.1016/S0079-8169(08)60875-2]
  • [6] On iteration semiring-semimodule pairs
    Esik, Z.
    Kuich, W.
    [J]. SEMIGROUP FORUM, 2007, 75 (01) : 129 - 159
  • [7] Esik Z., 2005, Journal of Automata, Languages and Combinatorics, V10, P243
  • [8] Ésik Z, 2004, LECT NOTES COMPUT SC, V3113, P68
  • [9] Esik Zoltan, 2007, Journal of Automata, Languages and Combinatorics, V12, P435
  • [10] Esik Z., Modern automata theory