Precise temperature sensing with nanoscale thermal sensors based on diamond NV centers

被引:30
作者
Choe, Sunuk [1 ]
Yoon, Jungbae [1 ]
Lee, Myeongwon [1 ]
Oh, Jooeon [1 ]
Lee, Dongkwon [1 ]
Kang, Heeseong [2 ]
Lee, Chul-Ho [2 ]
Lee, Donghun [1 ]
机构
[1] Korea Univ, Dept Phys, Seoul 02841, South Korea
[2] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Temperature sensing; Diamond NV center; Nanodiamond; THERMOMETRY;
D O I
10.1016/j.cap.2018.06.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Sensing temperature with high precision and high spatial resolution is challenging and requires novel temperature measurement techniques. Recently, an atomic-scale thermal sensor based on a defect center in diamond, i.e., a nitrogen-vacancy (NV) center, has been developed, and successfully demonstrated temperature sensing at the mK level and a few tens of nanometers. Here we discuss a temperature sensing mechanism based on the NV center in both experimental and theoretical aspects. At room temperature, we show temperature sensing over a wide-range of temperatures similar to 90 K with a precision of 0.2 K. We also map temperature gradients in a bridge-like device a few hundreds of micrometers long. In addition, we theoretically compare three sensing protocols and analyze temperature sensitivity to find optimal measurement time and NV concentration for the ensemble measurement.
引用
收藏
页码:1066 / 1070
页数:5
相关论文
共 18 条
[1]   Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond [J].
Acosta, V. M. ;
Bauch, E. ;
Ledbetter, M. P. ;
Waxman, A. ;
Bouchard, L-S. ;
Budker, D. .
PHYSICAL REVIEW LETTERS, 2010, 104 (07)
[2]   Solid-state electronic spin coherence time approaching one second [J].
Bar-Gill, N. ;
Pham, L. M. ;
Jarmola, A. ;
Budker, D. ;
Walsworth, R. L. .
NATURE COMMUNICATIONS, 2013, 4
[3]   Thermometry at the nanoscale [J].
Brites, Carlos D. S. ;
Lima, Patricia P. ;
Silva, Nuno J. O. ;
Millan, Angel ;
Amaral, Vitor S. ;
Palacio, Fernando ;
Carlos, Luis D. .
NANOSCALE, 2012, 4 (16) :4799-4829
[4]   Quantum sensing [J].
Degen, C. L. ;
Reinhard, F. ;
Cappellaro, P. .
REVIEWS OF MODERN PHYSICS, 2017, 89 (03)
[5]   Hydrophilic Fluorescent Nanogel Thermometer for Intracellular Thermometry [J].
Gota, Chie ;
Okabe, Kohki ;
Funatsu, Takashi ;
Harada, Yoshie ;
Uchiyama, Seiichi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (08) :2766-+
[6]   Luminescence nanothermometry [J].
Jaque, Daniel ;
Vetrone, Fiorenzo .
NANOSCALE, 2012, 4 (15) :4301-4326
[7]   Nanometre-scale thermometry in a living cell [J].
Kucsko, G. ;
Maurer, P. C. ;
Yao, N. Y. ;
Kubo, M. ;
Noh, H. J. ;
Lo, P. K. ;
Park, H. ;
Lukin, M. D. .
NATURE, 2013, 500 (7460) :54-U71
[8]   Thermometer design at the nanoscale [J].
Lee, Jaebeom ;
Kotov, Nicholas A. .
NANO TODAY, 2007, 2 (01) :48-51
[9]   Scanning thermal microscopy [J].
Majumdar, A .
ANNUAL REVIEW OF MATERIALS SCIENCE, 1999, 29 :505-585
[10]   Room-Temperature Quantum Bit Memory Exceeding One Second [J].
Maurer, P. C. ;
Kucsko, G. ;
Latta, C. ;
Jiang, L. ;
Yao, N. Y. ;
Bennett, S. D. ;
Pastawski, F. ;
Hunger, D. ;
Chisholm, N. ;
Markham, M. ;
Twitchen, D. J. ;
Cirac, J. I. ;
Lukin, M. D. .
SCIENCE, 2012, 336 (6086) :1283-1286