Application of L1/2 regularization logistic method in heart disease diagnosis

被引:8
作者
Zhang, Bowen
Chai, Hua
Yang, Ziyi
Liang, Yong [1 ]
Chu, Gejin
Liu, Xiaoying
机构
[1] Macau Univ Sci & Technol, Fac Informat Technol, Taipa 999078, Macau, Peoples R China
关键词
Heart disease; feature selection; sparse logistic regression; L-1/2; regularization; VARIABLE SELECTION; REGRESSION;
D O I
10.3233/BME-141169
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Heart disease has become the number one killer of human health, and its diagnosis depends on many features, such as age, blood pressure, heart rate and other dozens of physiological indicators. Although there are so many risk factors, doctors usually diagnose the disease depending on their intuition and experience, which requires a lot of knowledge and experience for correct determination. To find the hidden medical information in the existing clinical data is a noticeable and powerful approach in the study of heart disease diagnosis. In this paper, sparse logistic regression method is introduced to detect the key risk factors using L-1/2 regularization on the real heart disease data. Experimental results show that the sparse logistic L-1/2 regularization method achieves fewer but informative key features than Lasso, SCAD, MCP and Elastic net regularization approaches. Simultaneously, the proposed method can cut down the computational complexity, save cost and time to undergo medical tests and checkups, reduce the number of attributes needed to be taken from patients.
引用
收藏
页码:3447 / 3454
页数:8
相关论文
共 50 条
  • [41] Structure Optimization of Neural Networks with L1 Regularization on Gates
    Chang, Qin
    Wang, Junze
    Zhang, Huaqing
    Shi, Lina
    Wang, Jian
    Pal, Nikhil R.
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 196 - 203
  • [42] Gene Selection based on Fuzzy measure with L1 regularization
    Wang, Jinfeng
    Chen, Jiajie
    Wang, Hui
    2018 21ST IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2018), 2018, : 157 - 163
  • [43] SPARSE REPRESENTATION LEARNING OF DATA BY AUTOENCODERS WITH L1/2 REGULARIZATION
    Li, F.
    Zurada, J. M.
    Wu, W.
    NEURAL NETWORK WORLD, 2018, 28 (02) : 133 - 147
  • [44] A Sharp Nonasymptotic Bound and Phase Diagram of L1/2 Regularization
    Hai ZHANG
    Zong Ben XU
    Yao WANG
    Xiang Yu CHANG
    Yong LIANG
    ActaMathematicaSinica(EnglishSeries), 2014, 30 (07) : 1242 - 1258
  • [45] Based on rough sets and L1 regularization of the fault diagnosis of linear regression model
    Yao Hong-wei
    Tong XinDi
    2016 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS), 2017, : 490 - 492
  • [46] Feature Selection Using Smooth Gradient L1/2 Regularization
    Gao, Hongmin
    Yang, Yichen
    Zhang, Bingyin
    Li, Long
    Zhang, Huaqing
    Wu, Shujun
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT IV, 2017, 10637 : 160 - 170
  • [47] A sharp nonasymptotic bound and phase diagram of L1/2 regularization
    Hai Zhang
    Zong Ben Xu
    Yao Wang
    Xiang Yu Chang
    Yong Liang
    Acta Mathematica Sinica, English Series, 2014, 30 : 1242 - 1258
  • [48] A modified L1/2 regularization algorithm for electrical impedance tomography
    Fan, Wenru
    Wang, Chi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (01)
  • [49] Source reconstruction for bioluminescence tomography via L1/2 regularization
    Yu, Jingjing
    Li, Qiyue
    Wang, Haiyu
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2018, 11 (02)
  • [50] Sparse Feature Grouping based on l1/2 Norm Regularization
    Mao, Wentao
    Xu, Wentao
    Li, Yuan
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 1045 - 1051