Application of L1/2 regularization logistic method in heart disease diagnosis

被引:8
|
作者
Zhang, Bowen
Chai, Hua
Yang, Ziyi
Liang, Yong [1 ]
Chu, Gejin
Liu, Xiaoying
机构
[1] Macau Univ Sci & Technol, Fac Informat Technol, Taipa 999078, Macau, Peoples R China
关键词
Heart disease; feature selection; sparse logistic regression; L-1/2; regularization; VARIABLE SELECTION; REGRESSION;
D O I
10.3233/BME-141169
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Heart disease has become the number one killer of human health, and its diagnosis depends on many features, such as age, blood pressure, heart rate and other dozens of physiological indicators. Although there are so many risk factors, doctors usually diagnose the disease depending on their intuition and experience, which requires a lot of knowledge and experience for correct determination. To find the hidden medical information in the existing clinical data is a noticeable and powerful approach in the study of heart disease diagnosis. In this paper, sparse logistic regression method is introduced to detect the key risk factors using L-1/2 regularization on the real heart disease data. Experimental results show that the sparse logistic L-1/2 regularization method achieves fewer but informative key features than Lasso, SCAD, MCP and Elastic net regularization approaches. Simultaneously, the proposed method can cut down the computational complexity, save cost and time to undergo medical tests and checkups, reduce the number of attributes needed to be taken from patients.
引用
收藏
页码:3447 / 3454
页数:8
相关论文
共 50 条
  • [21] AN l1 - lp DC REGULARIZATION METHOD FOR COMPRESSED SENSING
    Cao, Wenhe
    Ku, Hong-Kun
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (09) : 1889 - 1901
  • [22] Oriented total variation l1/2 regularization
    Jiang, Wenfei
    Cui, Hengbin
    Zhang, Fan
    Rong, Yaocheng
    Chen, Zhibo
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2015, 29 : 125 - 137
  • [23] Application of L1 - L2 Regularization in Sparse-View Photoacoustic Imaging Reconstruction
    Wang, Mengyu
    Dai, Shuo
    Wang, Xin
    Liu, Xueyan
    IEEE PHOTONICS JOURNAL, 2024, 16 (03): : 1 - 8
  • [24] ROBUST AMPLITUDE METHOD WITH L1/2-REGULARIZATION FOR COMPRESSIVE PHASE RETRIEVAL
    Kong, Lijiao
    Yan, Ailing
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (10) : 7686 - 7702
  • [25] Fan noise radial mode detection based on L1/2 regularization method
    Bai, Baohong
    APPLIED ACOUSTICS, 2025, 228
  • [26] Parameter choices for sparse regularization with the l1 norm
    Liu, Qianru
    Wang, Rui
    Xu, Yuesheng
    Yan, Mingsong
    INVERSE PROBLEMS, 2023, 39 (02)
  • [27] A blind deconvolution method based on L1/L2 regularization priors in the gradient space
    Cai, Ying
    Shi, Yu
    Hua, Xia
    MIPPR 2017: MULTISPECTRAL IMAGE ACQUISITION, PROCESSING, AND ANALYSIS, 2018, 10607
  • [28] Feature Selection with L1 Regularization in Formal Neurons
    Bobrowski, Leon
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2024, 2024, 2141 : 343 - 353
  • [29] Sparse Gaussian Process regression model based on l1/2 regularization
    Kou, Peng
    Gao, Feng
    APPLIED INTELLIGENCE, 2014, 40 (04) : 669 - 681
  • [30] Some sharp performance bounds for least squares regression with L1 regularization
    Zhang, Tong
    ANNALS OF STATISTICS, 2009, 37 (5A): : 2109 - 2144