Spatiotemporal Variations in Grassland Vulnerability on the Qinghai-Tibet Plateau Based on a Comprehensive Framework

被引:3
|
作者
Zhao, Zhengyuan [1 ,2 ]
Zhang, Yunlong [1 ]
Sun, Siqi [1 ,2 ]
Li, Ting [1 ,2 ]
Lu, Yihe [1 ,2 ]
Jiang, Wei [1 ]
Wu, Xing [1 ,2 ]
机构
[1] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
[2] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
关键词
grassland vulnerability; spatiotemporal variations; environmental vulnerability distance index; driving factors; Qinghai-Tibet Plateau; ECOLOGICAL VULNERABILITY; AUTONOMOUS REGION; CLIMATE; VARIABILITY; SENSITIVITY; PROTECTION; MANAGEMENT; CHINA; DESERTIFICATION; RESILIENCE;
D O I
10.3390/su14094912
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Grasslands are globally important for providing essential ecosystem services and maintaining ecological security. Monitoring and assessing grassland vulnerability are critical for developing long-term grassland management policies and strategies. The grassland vulnerability on the Qinghai-Tibet Plateau (QTP) is considered high, but its spatial and temporal variations in response to human activities and climate change are not well understood. In this study, a comprehensive grassland vulnerability index (GVI), which includes natural factors (VNF), environmental disturbances (VED), and socioeconomic impacts (VSI), was developed by using the analytic hierarchy process (AHP), principal component analysis (PCA), and environmental vulnerability distance index (EVDI). Our results showed that the spatial distribution of GVI had obvious heterogeneity, decreasing from northwest to southeast; the regions with serious and extreme vulnerability were mainly concentrated in the north-western alpine steppe and desert steppe. From 2000 to 2018, GVI decreased from 0.61 in 2000 to 0.60 in 2010 and then to 0.59 in 2018, demonstrating a healthy tendency. The normalized difference vegetation index (NDVI), land desertification, and population were the factors that had the most significant impact on VNF, VED, and VSI, respectively. The global Moran's I index of grassland vulnerability was greater than 0, with a significant positive spatial correlation. The number of High-High and Low-Low units decreased, indicating that the High-High and Low-Low cluster regions tended to be discrete. Moreover, our results suggest that understanding the variations in grassland vulnerability on the QTP is important for regional sustainable development in the context of intensified climate change and human disturbances.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Spatiotemporal Distribution and Influencing Factors of Ecosystem Vulnerability on Qinghai-Tibet Plateau
    Li, Han
    Song, Wei
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (12)
  • [2] Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI
    Shiliang Liu
    Fangyan Cheng
    Shikui Dong
    Haidi Zhao
    Xiaoyun Hou
    Xue Wu
    Scientific Reports, 7
  • [3] Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI
    Liu, Shiliang
    Cheng, Fangyan
    Dong, Shikui
    Zhao, Haidi
    Hou, Xiaoyun
    Wu, Xue
    SCIENTIFIC REPORTS, 2017, 7
  • [4] Spatiotemporal coda Q variations in the northeastern margin of the Qinghai-Tibet Plateau, China
    Liang, Zhaocheng
    Guo, Xiao
    Zou, Rui
    Liu, Xuzhou
    Qin, Manzhong
    Li, Shaohua
    JOURNAL OF EARTH SYSTEM SCIENCE, 2024, 133 (02)
  • [5] Spatiotemporal variability of permafrost degradation on the Qinghai-Tibet Plateau
    Jin, HuiJun
    Luo, DongLiang
    Wang, ShaoLing
    Lue, LanZhi
    Wu, JiChun
    SCIENCES IN COLD AND ARID REGIONS, 2011, 3 (04): : 281 - 305
  • [6] Spatiotemporal Patterns and Driving Factors of Ecological Vulnerability on the Qinghai-Tibet Plateau Based on the Google Earth Engine
    Zhao, Zhengyuan
    Li, Ting
    Zhang, Yunlong
    Lu, Da
    Wang, Cong
    Lu, Yihe
    Wu, Xing
    REMOTE SENSING, 2022, 14 (20)
  • [7] Spatiotemporal patterns and alleviating of grassland overgrazing under current and future conditions in Qinghai-Tibet Plateau
    Wang, Lijing
    Yan, Lingyan
    Zhang, Jingting
    Lu, Fei
    Ouyang, Zhiyun
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2025, 376
  • [8] Spatiotemporal Variations in Fractional Vegetation Cover and Their Responses to Climatic Changes on the Qinghai-Tibet Plateau
    Han, Haoshuang
    Yin, Yunhe
    Zhao, Yan
    Qin, Feng
    REMOTE SENSING, 2023, 15 (10)
  • [9] Spatiotemporal vegetation cover variations in the Qinghai-Tibet Plateau under global climate change
    Xu XingKui
    Chen Hong
    Levy, Jason K.
    CHINESE SCIENCE BULLETIN, 2008, 53 (06): : 915 - 922
  • [10] Spatiotemporal Variations in the Sensitivity of Vegetation Growth to Typical Climate Factors on the Qinghai-Tibet Plateau
    Wu, Kai
    Chen, Jiahao
    Yang, Han
    Yang, Yue
    Hu, Zhongmin
    REMOTE SENSING, 2023, 15 (09)