The carbon balance of an old-growth forest: Building across approaches

被引:32
作者
Field, CB [1 ]
Kaduk, J [1 ]
机构
[1] Carnegie Inst Sci, Dept Plant Biol, Stanford, CA 94305 USA
关键词
old-growth forest; carbon balance; net primary production; eddy flux;
D O I
10.1007/s10021-004-0142-7
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The carbon budget of the Wind River old-growth forest is being addressed from a variety of perspectives and with a range of approaches. The goal of this comprehensive analysis is developing a thorough, general, and validated understanding of the carbon balance, as well as the processes controlling it. The initial results from studies addressing annual carbon (C) balance with ground-based methods, eddy flux, leaf-based models, and ecosystem models are consistent in some, but not all, respects. Net primary production is 500-600 g C m(-2) y(-1) (5-6 Mg C ha(-1) y(-1)), consistent with estimates based on climate alone. The site appears to be close to carbon equilibrium, as a multiyear average, using ground-based methods but a sink of approximately 150-190 g C m(-2) y(-1) from eddy flux for a single year. An overview of the mechanisms that can drive forest carbon sinks illustrates why methods emphasizing different temporal and spatial scales, as well as different processes, can come to different conclusions, and it highlights opportunities in moving toward a truly integrated approach.
引用
收藏
页码:525 / 533
页数:9
相关论文
共 45 条
[1]   MEASURING BIOSPHERE-ATMOSPHERE EXCHANGES OF BIOLOGICALLY RELATED GASES WITH MICROMETEOROLOGICAL METHODS [J].
BALDOCCHI, DD ;
HICKS, BB ;
MEYERS, TP .
ECOLOGY, 1988, 69 (05) :1331-1340
[2]   Global carbon sinks and their variability inferred from atmospheric O2 and δ13C [J].
Battle, M ;
Bender, ML ;
Tans, PP ;
White, JWC ;
Ellis, JT ;
Conway, T ;
Francey, RJ .
SCIENCE, 2000, 287 (5462) :2467-2470
[3]   Variability in the O-2/N-2 ratio of southern hemisphere air, 1991-1994: Implications for the carbon cycle [J].
Bender, M ;
Ellis, T ;
Tans, P ;
Francey, R ;
Lowe, D .
GLOBAL BIOGEOCHEMICAL CYCLES, 1996, 10 (01) :9-21
[4]   The response of global terrestrial ecosystems to interannual temperature variability [J].
Braswell, BH ;
Schimel, DS ;
Linder, E ;
Moore, B .
SCIENCE, 1997, 278 (5339) :870-872
[5]   Nitrogen states in plant ecosystems: A viewpoint [J].
Cannell, MGR ;
Thornley, JHM .
ANNALS OF BOTANY, 2000, 86 (06) :1161-1167
[6]   Contributions of land-use history to carbon accumulation in US forests [J].
Caspersen, JP ;
Pacala, SW ;
Jenkins, JC ;
Hurtt, GC ;
Moorcroft, PR ;
Birdsey, RA .
SCIENCE, 2000, 290 (5494) :1148-1151
[7]   Comparing global models of terrestrial net primary productivity (NPP): overview and key results [J].
Cramer, W ;
Kicklighter, DW ;
Bondeau, A ;
Moore, B ;
Churkina, G ;
Nemry, B ;
Ruimy, A ;
Schloss, AL .
GLOBAL CHANGE BIOLOGY, 1999, 5 :1-15
[8]   Gap filling strategies for defensible annual sums of net ecosystem exchange [J].
Falge, E ;
Baldocchi, D ;
Olson, R ;
Anthoni, P ;
Aubinet, M ;
Bernhofer, C ;
Burba, G ;
Ceulemans, R ;
Clement, R ;
Dolman, H ;
Granier, A ;
Gross, P ;
Grünwald, T ;
Hollinger, D ;
Jensen, NO ;
Katul, G ;
Keronen, P ;
Kowalski, A ;
Lai, CT ;
Law, BE ;
Meyers, T ;
Moncrieff, H ;
Moors, E ;
Munger, JW ;
Pilegaard, K ;
Rannik, Ü ;
Rebmann, C ;
Suyker, A ;
Tenhunen, J ;
Tu, K ;
Verma, S ;
Vesala, T ;
Wilson, K ;
Wofsy, S .
AGRICULTURAL AND FOREST METEOROLOGY, 2001, 107 (01) :43-69
[9]   The global carbon cycle:: A test of our knowledge of earth as a system [J].
Falkowski, P ;
Scholes, RJ ;
Boyle, E ;
Canadell, J ;
Canfield, D ;
Elser, J ;
Gruber, N ;
Hibbard, K ;
Högberg, P ;
Linder, S ;
Mackenzie, FT ;
Moore, B ;
Pedersen, T ;
Rosenthal, Y ;
Seitzinger, S ;
Smetacek, V ;
Steffen, W .
SCIENCE, 2000, 290 (5490) :291-296
[10]   LEAF AGE AND SEASONAL EFFECTS ON LIGHT, WATER, AND NITROGEN USE EFFICIENCY IN A CALIFORNIA SHRUB [J].
FIELD, C ;
MOONEY, HA .
OECOLOGIA, 1983, 56 (2-3) :348-355