Using a simulation analysis to evaluate the impact of crop mapping error on crop area estimation from stratified sampling

被引:4
|
作者
Sun, Peijun [1 ,2 ,3 ,4 ]
Congalton, Russell G. [4 ]
Pan, Yaozhong [1 ,2 ,3 ]
机构
[1] Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing, Peoples R China
[2] Chinese Acad Sci, State Key Lab Remote Sensing Sci, Inst Remote Sensing & Digital Earth, Beijing, Peoples R China
[3] Beijing Normal Univ, Fac Geog Sci, Inst Remote Sensing & Engn, Beijing, Peoples R China
[4] Univ New Hampshire, Dept Nat Resources & Environm, Durham, NH 03824 USA
基金
美国食品与农业研究所;
关键词
Crop mapping error; area estimation; estimation efficiency; landscape heterogeneity; stratified sampling; PADDY RICE AGRICULTURE; LAND-COVER; QUANTIFYING UNCERTAINTY; CLASSIFICATION; ALGORITHMS; PROPORTION;
D O I
10.1080/17538947.2018.1499827
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
To analyze the efficiency of area estimations (i.e. estimation accuracy and variation of estimation) impacted by crop mapping error, we simulated error at eight levels for thematic maps using a stratified sampling estimation methodology. The results show that the estimation efficiency is influenced by the combination of the sample size and the error level. Evaluating the trade-offs between sample size and error level showed that reducing the crop mapping error level provides the most benefit (i.e. higher estimation efficiency). Further, sampling performance differed based on the heterogeneity of the crop area. The results demonstrated that the influence of increasing the error level on estimation efficiency is more detrimental in heterogeneous areas than in homogeneous ones. Therefore, to obtain higher estimation efficiency, a larger sample size and lower error level or both are needed, especially in heterogeneous areas. We suggest that existing land-cover maps should first be used to determine the heterogeneity of the area. The appropriate sample size for these areas then can be determined according to all three factors: heterogeneity, expected estimation efficiency, and sampling budget. Overall, extending our understanding of the impacts of crop mapping error is necessary for decision making to improve our ability to effectively estimate crop area.
引用
收藏
页码:1046 / 1066
页数:21
相关论文
共 50 条
  • [21] Error modeling based on geostatistics for uncertainty analysis in crop mapping using Gaofen-1 multispectral imagery
    You, Jiong
    Pei, Zhiyuan
    JOURNAL OF APPLIED REMOTE SENSING, 2015, 9
  • [22] Impact of lossy compression on mapping crop areas from remote sensing
    Zabala, Alaitz
    Pons, Xavier
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (08) : 2796 - 2813
  • [23] Large-scale crop type and crop area mapping across Brazil using synthetic aperture radar and optical imagery
    Ajadi, Olaniyi A.
    Barr, Jeremiah
    Liang, Sang-Zi
    Ferreira, Rogerio
    Kumpatla, Siva P.
    Patel, Rinkal
    Swatantran, Anu
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 97
  • [24] ESTIMATION OF CROP LEAF AREA INDEX USING MODIS DIRECTIONAL REFLECTANCES DATA
    Liu, Yang
    Liu, Ronggao
    Liu, Siliang
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 1533 - 1536
  • [25] Small area estimation of crop yield using remote sensing satellite data
    Singh, R
    Semwal, DP
    Rai, A
    Chhikara, RS
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (01) : 49 - 56
  • [26] Estimation of crop evapotranspiration of irrigation command area using remote sensing and GIS
    Ray, SS
    Dadhwal, VK
    AGRICULTURAL WATER MANAGEMENT, 2001, 49 (03) : 239 - 249
  • [27] CROP AREA ESTIMATION IN UKRAINE USING SATELLITE DATA WITHIN THE MARS PROJECT
    Kussul, Nataliia
    Skakun, Sergii
    Shelestov, Andrii
    Kravchenko, Oleksii
    Gallego, Javier Francisco
    Kussul, Olga
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 3756 - 3759
  • [28] Estimation of crop production for smaller geographical area: An application of discriminant function analysis
    Sharma M.K.
    Sisodia B.V.S.
    Journal of Statistical Theory and Practice, 2016, 10 (2) : 444 - 455
  • [29] Evaluation of stratified sampling strategies to access maximal genetic diversity from crop plant genebank collections
    Syverson, R. L.
    Bradeen, J. M.
    PHYTOPATHOLOGY, 2005, 95 (06) : S166 - S166
  • [30] Comparative analysis of leaf area index and maize yield estimation assimilating remote sensing and DSSAT crop simulation model
    Thimmareddy, Hemareddy
    Pazhanivelan, S.
    Ragunath, K. P.
    Sathyamoorthy, N. K.
    Sivamurugan, A. P.
    Vincent, S.
    Sudarmanian, N. S.
    Satheesh, S.
    Pugazenthi, K.
    PLANT SCIENCE TODAY, 2024, 11 (04): : 137 - 148