LOCAL DEGENERACY OF MARKOV CHAIN MONTE CARLO METHODS

被引:1
作者
Kamatani, Kengo [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Toyonaka, Osaka 5600043, Japan
关键词
Markov chain Monte Carlo; asymptotic normality; cumulative link model; CONVERGENCE-RATES; DATA AUGMENTATION;
D O I
10.1051/ps/2014004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study asymptotic behavior of Markov chain Monte Carlo (MCMC) procedures. Sometimes the performances of MCMC procedures are poor and there are great importance for the study of such behavior. In this paper we call degeneracy for a particular type of poor performances. We show some equivalent conditions for degeneracy. As an application, we consider the cumulative probit model. It is well known that the natural data augmentation (DA) procedure does not work well for this model and the so-called parameter-expanded data augmentation (PX-DA) procedure is considered to be a remedy for it. In the sense of degeneracy, the PX-DA procedure is better than the DA procedure. However, when the number of categories is large, both procedures are degenerate and so the PX-DA procedure may not provide good estimate for the posterior distribution.
引用
收藏
页码:713 / 725
页数:13
相关论文
共 20 条
[1]  
DIACONIS P., 1993, The Annals of Applied Probability, V3, P696, DOI DOI 10.1214/AOAP/1177005359
[2]   ON THE STOCHASTIC MATRICES ASSOCIATED WITH CERTAIN QUEUING PROCESSES [J].
FOSTER, FG .
ANNALS OF MATHEMATICAL STATISTICS, 1953, 24 (03) :355-360
[3]   A theoretical comparison of the data augmentation, marginal augmentation and PX-DA algorithms [J].
Hobert, James P. ;
Marchev, Dobrin .
ANNALS OF STATISTICS, 2008, 36 (02) :532-554
[4]  
Ito K., 2004, COMMUNICATION
[5]  
Kamatani K., 2013, RIMS KOKYUROKU, V1860, P140
[6]  
Kamatani K., 2013, B INF CYBER, V45, P103
[7]   Local consistency of Markov chain Monte Carlo methods [J].
Kamatani, Kengo .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2014, 66 (01) :63-74
[8]   Parameter expansion for data augmentation [J].
Liu, JS ;
Wu, YN .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (448) :1264-1274
[9]   Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian computation [J].
Liu, JS ;
Sabatti, C .
BIOMETRIKA, 2000, 87 (02) :353-369
[10]   Seeking efficient data augmentation schemes via conditional and marginal augmentation [J].
Meng, XL ;
Van Dyk, DA .
BIOMETRIKA, 1999, 86 (02) :301-320