Some new versions of integral inequalities for log-preinvex fuzzy-interval-valued functions through fuzzy order relation

被引:9
作者
Khan, Muhammad Bilal [1 ]
Srivastava, Hari Mohan [2 ,3 ,4 ,5 ]
Mohammed, Pshtiwan Othman [6 ]
Macias-Diaz, Jorge E. [7 ,9 ]
Hamed, Y. S. [8 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Islamabad 44000, Pakistan
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[4] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[5] Int Telemat Univ, Sect Math, I-00186 Rome, Italy
[6] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani 46001, Kurdistan Regio, Iraq
[7] Univ Autonoma Aguascalientes, Dept Matemat & Fis, Ave Univ 940,Ciudad Univ, Aguascalientes 20131, Aguascalientes, Mexico
[8] Taif Univ, Coll Sci, Dept Math & Stat, POB 11099, At Taif 21944, Saudi Arabia
[9] Tallinn Univ, Sch Digital Technol, Dept Math, Narva Rd 25, EE-10120 Tallinn, Estonia
关键词
Log-Preinvex fuzzy-interval-valued function; Fuzzy integral; Fuzzy-interval Hermite-Hadamard type inequality; Fuzzy-interval Hermite-Hadamard-Fejer inequality; CONVEX; CONTINUITY;
D O I
10.1016/j.aej.2021.12.052
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, firstly we define the new class of log-preinvex fuzzy-interval-valued functions which is called log-h-preinvex fuzzy-interval-valued functions (log-h-preinvex FIVFs) by means of fuzzy order relation. This fuzzy order relation is defined level wise through KulischMiranker order relation defined on fuzzy-interval space. Secondly, some new HermiteHadamard-type and Hermite-Hadamard-Fejer inequalities for log-h-preinvex FIVFs via fuzzy integrals are also established. Finally, we obtain some related inequalities for log-h-preinvex FIVFs. To strengthen our results, we provide some examples to illustrate the validation of our results, and several new and previously known results are obtained. (c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/ 4.0/).
引用
收藏
页码:7089 / 7101
页数:13
相关论文
共 51 条
  • [1] Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense
    Alomari, M.
    Darus, M.
    Dragomir, S. S.
    Cerone, P.
    [J]. APPLIED MATHEMATICS LETTERS, 2010, 23 (09) : 1071 - 1076
  • [2] Generalized convexity and inequalities
    Anderson, G. D.
    Vamanamurthy, M. K.
    Vuorinen, M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) : 1294 - 1308
  • [3] New inequalities of Hermite-Hadamard type via s-convex functions in the second sense with applications
    Avci, Merve
    Kavurmaci, Havva
    Ozdemir, M. Emin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 5171 - 5176
  • [4] Bede B, 2013, STUD FUZZ SOFT COMP, V295, P1, DOI 10.1007/978-3-642-35221-8
  • [5] WHAT IS INVEXITY
    BENISRAEL, A
    MOND, B
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1986, 28 : 1 - 9
  • [6] Properties of h-convex functions related to the Hermite-Hadamard-Fejer inequalities
    Bombardelli, Mea
    Varosanec, Sanja
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (09) : 1869 - 1877
  • [7] Cerone P., 2004, Demonstr. Math., V37, P299
  • [8] Cervelati J, 2004, ADV SOFT COMP, P653
  • [9] M-convex fuzzy mappings and fuzzy integral mean
    Chalco-Cano, Y
    Rojas-Medar, MA
    Román-Flores, H
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (10-11) : 1117 - 1126
  • [10] Ostrowski type inequalities and applications in numerical integration for interval-valued functions
    Chalco-Cano, Y.
    Lodwick, W. A.
    Condori-Equice, W.
    [J]. SOFT COMPUTING, 2015, 19 (11) : 3293 - 3300