Image Super-Resolution Reconstruction Based on a Generative Adversarial Network

被引:4
|
作者
Wu, Yun [1 ]
Lan, Lin [1 ]
Long, Huiyun [1 ]
Kong, Guangqian [1 ]
Duan, Xun [1 ]
Xu, Changzhuan [1 ]
机构
[1] Guizhou Univ, Sch Comp Sci & Technol, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; dual network structure; generative adversarial network; perceptual loss; super-resolution;
D O I
10.1109/ACCESS.2020.3040424
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the field of computer vision, super-resolution reconstruction techniques based on deep learning have undergone considerable advancement; however, certain limitations remain, such as insufficient feature extraction and blurred image generation. To address these problems, we propose an image superresolution reconstruction model based on a generative adversarial network. First, we employ a dual network structure in the generator network to solve the problem of insufficient feature extraction. The dual network structure is divided into an upsample subnetwork and a refinement subnetwork, which upsample and optimize a low-resolution image, respectively. In a scene with large upscaling factors, this structure can reduce the negative effect of noise and enhance the utilization of high-frequency details, thereby generating highquality reconstruction results. Second, to generate sharper super-resolution images, we use the perceptual loss, which exhibits a fast convergence and excellent visual effect, to guide the generator network training. We apply the ResNeXt-50-32x4d network, which has few parameters and a large depth, to calculate the loss to obtain a reconstructed super-resolution image that is highly realistic. Finally, we introduce theWasserstein distance into the discriminator network to enhance the discrimination ability and stability of the model. Specifically, this distance is employed to eliminate the activation function in the last layer of the network and avoid the use of the logarithm in calculating the loss function. Extensive experiments on the DIV2K, Set5, Set14, and BSD100 datasets demonstrate the effectiveness of the proposed model.
引用
收藏
页码:215133 / 215144
页数:12
相关论文
共 50 条
  • [41] Single Image Super-Resolution: Depthwise Separable Convolution Super-Resolution Generative Adversarial Network
    Jiang, Zetao
    Huang, Yongsong
    Hu, Lirui
    APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [42] Super-Resolution Reconstruction Method of Pavement Crack Images Based on an Improved Generative Adversarial Network
    Yuan, Bo
    Sun, Zhaoyun
    Pei, Lili
    Li, Wei
    Ding, Minghang
    Hao, Xueli
    SENSORS, 2022, 22 (23)
  • [43] HYPERSPECTRAL IMAGE SUPER-RESOLUTION USING GENERATIVE ADVERSARIAL NETWORK AND RESIDUAL LEARNING
    Huang, Qian
    Li, Wei
    Hu, Ting
    Tao, Ran
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3012 - 3016
  • [44] LEARNING SPECTRAL AND SPATIAL FEATURES BASED ON GENERATIVE ADVERSARIAL NETWORK FOR HYPERSPECTRAL IMAGE SUPER-RESOLUTION
    Jiang, Ruituo
    Li, Xu
    Gao, Ang
    Li, Lixin
    Meng, Hongying
    Yue, Shigang
    Zhang, Lei
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3161 - 3164
  • [45] Super-resolution image reconstruction based on convolutional sparse coding and generative adversarial networks
    Du Jun-sen
    Guo Jie-long
    Yu Hui
    Wei Xian
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (10) : 1423 - 1433
  • [46] Edge-Aware Image Super-Resolution Using a Generative Adversarial Network
    Das B.
    Roy S.D.
    SN Computer Science, 4 (2)
  • [47] Improved Generative Adversarial Network for Super-Resolution Reconstruction of Coal Photomicrographs
    Zou, Liang
    Xu, Shifan
    Zhu, Weiming
    Huang, Xiu
    Lei, Zihui
    He, Kun
    SENSORS, 2023, 23 (16)
  • [48] Super-Resolution Reconstruction of Densely Connected Generative Adversarial Network Images
    Li Bin
    Ma Lu
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (22)
  • [49] Generative Adversarial Network-Based Image Super-Resolution Using Perceptual Content Losses
    Cheon, Manri
    Kim, Jun-Hyuk
    Choi, Jun-Ho
    Lee, Jong-Seok
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 : 51 - 62
  • [50] Image Super-Resolution Reconstruction Using Generative Adversarial Networks Based on Wide-Channel Activation
    Sun, Xudong
    Zhao, Zhenxi
    Zhang, Song
    Liu, Jintao
    Yang, Xinting
    Zhou, Chao
    IEEE ACCESS, 2020, 8 : 33838 - 33854