Image Super-Resolution Reconstruction Based on a Generative Adversarial Network

被引:4
|
作者
Wu, Yun [1 ]
Lan, Lin [1 ]
Long, Huiyun [1 ]
Kong, Guangqian [1 ]
Duan, Xun [1 ]
Xu, Changzhuan [1 ]
机构
[1] Guizhou Univ, Sch Comp Sci & Technol, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; dual network structure; generative adversarial network; perceptual loss; super-resolution;
D O I
10.1109/ACCESS.2020.3040424
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the field of computer vision, super-resolution reconstruction techniques based on deep learning have undergone considerable advancement; however, certain limitations remain, such as insufficient feature extraction and blurred image generation. To address these problems, we propose an image superresolution reconstruction model based on a generative adversarial network. First, we employ a dual network structure in the generator network to solve the problem of insufficient feature extraction. The dual network structure is divided into an upsample subnetwork and a refinement subnetwork, which upsample and optimize a low-resolution image, respectively. In a scene with large upscaling factors, this structure can reduce the negative effect of noise and enhance the utilization of high-frequency details, thereby generating highquality reconstruction results. Second, to generate sharper super-resolution images, we use the perceptual loss, which exhibits a fast convergence and excellent visual effect, to guide the generator network training. We apply the ResNeXt-50-32x4d network, which has few parameters and a large depth, to calculate the loss to obtain a reconstructed super-resolution image that is highly realistic. Finally, we introduce theWasserstein distance into the discriminator network to enhance the discrimination ability and stability of the model. Specifically, this distance is employed to eliminate the activation function in the last layer of the network and avoid the use of the logarithm in calculating the loss function. Extensive experiments on the DIV2K, Set5, Set14, and BSD100 datasets demonstrate the effectiveness of the proposed model.
引用
收藏
页码:215133 / 215144
页数:12
相关论文
共 50 条
  • [1] Image Reconstruction Algorithm Based on Improved Super-Resolution Generative Adversarial Network
    Zha Tibo
    Luo Lin
    Yang Kai
    Zhang Yu
    Li Jinlong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (08)
  • [2] Image super-resolution reconstruction based on improved generative adversarial network
    Wang Y.-L.
    Li X.-J.
    Ma H.-B.
    Ding Q.
    Pirouz M.
    Ma Q.-T.
    Journal of Network Intelligence, 2021, 6 (02): : 155 - 163
  • [3] Image Super-resolution Reconstruction Based on an Improved Generative Adversarial Network
    Liu, Han
    Wang, Fan
    Liu, Lijun
    2019 1ST INTERNATIONAL CONFERENCE ON INDUSTRIAL ARTIFICIAL INTELLIGENCE (IAI 2019), 2019,
  • [4] Super-resolution SAR Image Reconstruction via Generative Adversarial Network
    Wang, Longgang
    Zheng, Mana
    Du, Wenbo
    Wei, Menglin
    Li, Lianlin
    2018 12TH INTERNATIONAL SYMPOSIUM ON ANTENNAS, PROPAGATION AND ELECTROMAGNETIC THEORY (ISAPE), 2018,
  • [5] Mars Image Super-Resolution Based on Generative Adversarial Network
    Wang, Cong
    Zhang, Yin
    Zhang, Yongqiang
    Tian, Rui
    Ding, Mingli
    IEEE ACCESS, 2021, 9 : 108889 - 108898
  • [6] Image Super-Resolution Reconstruction Algorithm Based on Improved Enhanced Generative Adversarial Network
    She, Xiangyang
    Yang, Qinghao
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, NETWORK SECURITY AND COMMUNICATION TECHNOLOGY, CNSCT 2024, 2024, : 644 - 651
  • [7] A Super-Resolution Reconstruction Method for Shale Based on Generative Adversarial Network
    Ting Zhang
    Guangshun Hu
    Yi Yang
    Yi Du
    Transport in Porous Media, 2023, 150 : 383 - 426
  • [8] A Super-Resolution Reconstruction Method for Shale Based on Generative Adversarial Network
    Zhang, Ting
    Hu, Guangshun
    Yang, Yi
    Du, Yi
    TRANSPORT IN POROUS MEDIA, 2023, 150 (02) : 383 - 426
  • [9] Super-Resolution Reconstruction Algorithm of Images Based on Improved Enhanced Super-Resolution Generative Adversarial Network
    Xin Yuanxue
    Zhu Fengting
    Shi Pengfei
    Yang Xin
    Zhou Runkang
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (04)
  • [10] Image Super-resolution Reconstructing based on Generative Adversarial Network
    Nan Jing
    Bo Lei
    AI IN OPTICS AND PHOTONICS (AOPC 2019), 2019, 11342