Characteristics of plasma parameters and turbulence in the isotope-mixing and the non-mixing states in hydrogen-deuterium mixture plasmas in the large helical device

被引:11
作者
Ida, K. [1 ,2 ]
Yoshinuma, M. [1 ,2 ]
Tanaka, K. [1 ]
Nakata, M. [1 ,2 ]
Kobayashi, T. [1 ,2 ]
Fujiwara, Y. [1 ]
Sakamoto, R. [1 ,2 ]
Motojima, G. [1 ]
Masuzaki, S. [1 ,2 ]
机构
[1] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
[2] Grad Univ Adv Studies, SOKENDAI, Toki, Gifu 5095292, Japan
关键词
isotope mixing; particle transport; mixture plasma;
D O I
10.1088/1741-4326/abbf62
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Characteristics of plasma parameters and turbulence in the isotope-mixing and the non-mixing states in hydrogen-deuterium mixture plasmas in the large helical device are discussed. The isotope mixing state is characterized by the uniform isotope ratio profile regardless of the location of the particle source of each species in the isotope mixture plasma. The isotope non-mixing state is identified by the non-uniform isotope ratio profile measured with bulk charge exchange spectroscopy when the beam fueling isotope species differs from the recycling isotope species. The effect of collisionality, T-e/T-i ratio, sign of density gradient on transition between isotope mixing and non-mixing is discussed. The plasma parameters preferable for the non-mixing state are found to be lower collisionality, higher T-e/T-i, and negative or zero density gradient (peaked or flat density profile). The time scale of transition from non-mixing to mixing is evaluated by the hydrogen and deuterium pellet injection near the plasma edge and is found to be less than 5 ms, which is much shorter than the particle confinement time. The strong correlation between isotope mixing and turbulence characteristics is observed. This strong correlation suggests the change in turbulence is a strong candidate for the mechanism causing the transition between uniform and non-uniform isotope density ratio profiles.
引用
收藏
页数:11
相关论文
共 41 条
[1]   DESTABILIZATION OF TRAPPED-ELECTRON MODE BY MAGNETIC CURVATURE DRIFT RESONANCES [J].
ADAM, JC ;
TANG, WM ;
RUTHERFORD, PH .
PHYSICS OF FLUIDS, 1976, 19 (04) :561-566
[2]   Identification of trapped electron modes in frequency fluctuation spectra [J].
Arnichand, H. ;
Citrin, J. ;
Hacquin, S. ;
Sabot, R. ;
Kraemer-Flecken, A. ;
Garbet, X. ;
Bourdelle, C. ;
Bottereau, C. ;
Clairet, F. ;
Giacalone, J. C. ;
Guimaraes-Filho, Z. O. ;
Guirlet, R. ;
Hornung, G. ;
Lebschy, A. ;
Lotte, P. ;
Maget, P. ;
Medvedeva, A. ;
Molina, D. ;
Nikolaeva, V. ;
Prisiazhniuk, D. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (01)
[3]   A new gyrokinetic quasilinear transport model applied to particle transport in tokamak plasmas [J].
Bourdelle, C. ;
Garbet, X. ;
Imbeaux, F. ;
Casati, A. ;
Dubuit, N. ;
Guirlet, R. ;
Parisot, T. .
PHYSICS OF PLASMAS, 2007, 14 (11)
[4]   Fast H isotope and impurity mixing in ion-temperature-gradient turbulence [J].
Bourdelle, C. ;
Camenen, Y. ;
Citrin, J. ;
Marin, M. ;
Casson, F. J. ;
Koechl, F. ;
Maslov, M. ;
Abduallev, S. ;
Abhangi, M. ;
Abreu, P. ;
Afzal, M. ;
Aggarwal, K. M. ;
Ahlgren, T. ;
Ahn, J. H. ;
Aho-Mantila, L. ;
Aiba, N. ;
Airila, M. ;
Albanese, R. ;
Aldred, V. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allinson, M. ;
Alper, B. ;
Alves, E. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amicucci, L. ;
Amosov, V. ;
Sunden, E. Andersson ;
Angelone, M. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Appelbee, C. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arshad, S. ;
Ash, A. ;
Ashikawa, N. ;
Aslanyan, V. ;
Asunta, O. ;
Auriemma, F. ;
Austin, Y. ;
Avotina, L. ;
Axton, M. D. ;
Ayres, C. .
NUCLEAR FUSION, 2018, 58 (07)
[5]   Hysteresis as a probe of turbulent bifurcation in intrinsic rotation reversal on Alcator C-Mod [J].
Cao, N. M. ;
Rice, J. E. ;
Diamond, P. H. ;
White, A. E. ;
Baek, S. G. ;
Chilenski, M. A. ;
Hughes, J. W. ;
Irby, J. ;
Reinke, M. L. ;
Rodriguez-Fernandez, P. .
NUCLEAR FUSION, 2019, 59 (10)
[6]   Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz [J].
Citrin, J. ;
Bourdelle, C. ;
Casson, F. J. ;
Angioni, C. ;
Bonanomi, N. ;
Camenen, Y. ;
Garbet, X. ;
Garzotti, L. ;
Goerler, T. ;
Gurcan, O. ;
Koechl, F. ;
Imbeaux, F. ;
Linder, O. ;
van de Plassche, K. ;
Strand, P. ;
Szepesi, G. ;
Abduallev, S. ;
Abhangi, M. ;
Abreu, P. ;
Afzal, M. ;
Aggarwal, K. M. ;
Ahlgren, T. ;
Ahn, J. H. ;
Aho-Mantila, L. ;
Aiba, N. ;
Airila, M. ;
Albanese, R. ;
Aldred, V. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allinson, M. ;
Alper, B. ;
Alves, E. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amicucci, L. ;
Amosov, V. ;
Sunden, E. Andersson ;
Angelone, M. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Appelbee, C. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arshad, S. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (12)
[7]   Gyrokinetic simulation of collisionless trapped-electron mode turbulence [J].
Dannert, T ;
Jenko, F .
PHYSICS OF PLASMAS, 2005, 12 (07) :1-8
[8]   Physics of non-diffusive turbulent transport of momentum and the origins of spontaneous rotation in tokamaks [J].
Diamond, P. H. ;
McDevitt, C. J. ;
Guercan, Oe. D. ;
Hahm, T. S. ;
Wang, W. X. ;
Yoon, E. S. ;
Holod, I. ;
Lin, Z. ;
Naulin, V. ;
Singh, R. .
NUCLEAR FUSION, 2009, 49 (04)
[9]   Main ion and impurity edge profile evolution across the L- to H-mode transition on DIII-D [J].
Haskey, S. R. ;
Grierson, B. A. ;
Chrystal, C. ;
Ashourvan, A. ;
Burrell, K. H. ;
Groebner, R. J. ;
Belli, E. A. ;
Stagner, L. ;
Battaglia, D. J. ;
Stoltzfus-Dueck, T. ;
Bortolon, A. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (10)
[10]   Active spectroscopy measurements of the deuterium temperature, rotation, and density from the core to scrape off layer on the DIII-D tokamak (invited) [J].
Haskey, S. R. ;
Grierson, B. A. ;
Stagner, L. ;
Chrystal, C. ;
Ashourvan, A. ;
Bortolon, A. ;
Boyer, M. D. ;
Burrell, K. H. ;
Collins, C. ;
Groebner, R. J. ;
Kaplan, D. H. ;
Pablant, N. A. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (10)