Braiding for Categorical Algebras and Crossed Modules of Algebras II: Leibniz Algebras

被引:1
|
作者
Fernandez-Farina, Alejandro [1 ,2 ]
Ladra, Manuel [1 ,2 ]
机构
[1] Univ Santiago de Compostela, Dept Matemat, Santiago De Compostela 15782, Spain
[2] Univ Santiago de Compostela, Inst Matemat, Santiago De Compostela 15782, Spain
关键词
Lie algebra; Leibniz algebra; crossed module; braided internal category; Loday-Pirashvili category; non-abelian tensor product;
D O I
10.2298/FIL2005443F
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the category of braided categorical Leibniz algebras and braided crossed modules of Leibniz algebras, and we relate these structures with the categories of braided categorical Lie algebras and braided crossed modules of Lie algebras using the Loday-Pirashvili category.
引用
收藏
页码:1443 / 1469
页数:27
相关论文
共 50 条
  • [41] Complete Leibniz algebras
    Boyle, Kristen
    Misra, Kailash C.
    Stitzinger, Ernest
    JOURNAL OF ALGEBRA, 2020, 557 : 172 - 180
  • [42] On the capability of Leibniz algebras
    Khmaladze, Emzar
    Kurdiani, Revaz
    Ladra, Manuel
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (02) : 271 - 279
  • [43] Binary Leibniz Algebras
    Ismailov, N. A.
    Dzhumadil'daev, A. S.
    MATHEMATICAL NOTES, 2021, 110 (3-4) : 322 - 328
  • [44] On complete Leibniz algebras
    Ayupov, Sh A.
    Khudoyberdiyev, A. Kh
    Shermatova, Z. Kh
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2022, 32 (02) : 265 - 288
  • [45] Leibniz algebras and graphs
    Barreiro, Elisabete
    Calderon, Antonio J.
    Lopes, Samuel A.
    Sanchez, Jose M.
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (12) : 1994 - 2007
  • [46] Quadratic Leibniz Algebras
    Benayadi, Said
    Hidri, Samiha
    JOURNAL OF LIE THEORY, 2014, 24 (03) : 737 - 759
  • [47] CROSSED MODULES FOR HOM-LIE-RINEHART ALGEBRAS
    Zhang, Tao
    Han, Fengying
    Bi, Yanhui
    COLLOQUIUM MATHEMATICUM, 2018, 152 (01) : 1 - 14
  • [48] Cat1-Hopf algebras and crossed modules
    Fernandez Vilaboa, J. M.
    Lopez Lopez, M. P.
    Novoa, E. Villanueva
    COMMUNICATIONS IN ALGEBRA, 2007, 35 (01) : 181 - 191
  • [49] Grobner bases in universal enveloping algebras of Leibniz algebras
    Insua, Manuel A.
    Ladra, Manuel
    JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (05) : 517 - 526
  • [50] 3-Filiform Leibniz algebras of maximum length, whose naturally graded algebras are Lie algebras
    Camacho, L. M.
    Canete, E. M.
    Gomez, J. R.
    Omirov, B. A.
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (09) : 1039 - 1058