CERTAIN CHARACTER SUMS AND HYPERGEOMETRIC SERIES

被引:5
作者
Barman, Rupam [1 ]
Saikia, Neelam [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, Gauhati, Assam, India
关键词
character sum; hypergeometric series; p-adic gamma function; ELLIPTIC-CURVES; SPECIAL VALUES; FINITE-FIELDS; FROBENIUS; TRACE;
D O I
10.2140/pjm.2018.295.271
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove two transformations for the p-adic hypergeometric series which can be described as p-adic analogues of a Kummer's linear transformation and a transformation of Clausen. We first evaluate two character sums, and then relate them to the p-adic hypergeometric series to deduce the transformations. We also find another transformation for the p-adic hypergeometric series from which many special values of the p-adic hypergeometric series as well as finite field hypergeometric functions are obtained.
引用
收藏
页码:271 / 289
页数:19
相关论文
共 33 条
[1]  
Ahlgren S, 2000, J REINE ANGEW MATH, V518, P187
[2]  
[Anonymous], 1935, Cambridge Tracts in Mathematics and Mathematical Physics
[3]  
[Anonymous], 1998, Gauss and Jacobi Sums
[4]   Summation identities and special values of hypergeometric series in the p-adic setting [J].
Barman, Rupam ;
Saikia, Neelam ;
McCarthy, Dermot .
JOURNAL OF NUMBER THEORY, 2015, 153 :63-84
[5]   Certain transformations for hypergeometric series in the p-adic setting [J].
Barman, Rupam ;
Saikia, Neelam .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (02) :645-660
[6]   p-Adic gamma function and the trace of Frobenius of elliptic curves [J].
Barman, Rupam ;
Saikia, Lam .
JOURNAL OF NUMBER THEORY, 2014, 140 :181-195
[7]  
Barman R, 2013, P AM MATH SOC, V141, P3403
[8]   Elliptic curves and special values of Gaussian hypergeometric series [J].
Barman, Rupam ;
Kalita, Gautam .
JOURNAL OF NUMBER THEORY, 2013, 133 (09) :3099-3111
[9]   CERTAIN VALUES OF GAUSSIAN HYPERGEOMETRIC SERIES AND A FAMILY OF ALGEBRAIC CURVES [J].
Barman, Rupam ;
Kalita, Gautam .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (04) :945-961
[10]  
Evans R, 2010, P AM MATH SOC, V138, P517