Constructing effective TiO2 nano-coating for high-voltage Ni-rich cathode materials for lithium ion batteries by precise kinetic control

被引:99
作者
Fan, Qinglu [1 ,2 ,3 ]
Lin, Kaiji [1 ,2 ]
Yang, Shaodian [1 ,2 ]
Guan, Shoujie [1 ,2 ]
Chen, Jinbiao [1 ,2 ]
Feng, Shuai [4 ]
Liu, Jun [1 ,2 ]
Liu, Liying [1 ,2 ]
Li, Jie [5 ]
Shi, Zhicong [1 ,2 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Peoples R China
[2] Guangdong Engn Technol Res Ctr New Energy Mat & D, Guangzhou 510006, Peoples R China
[3] Binghamton Univ, Dept Chem, Binghamton, NY 13902 USA
[4] Binghamton Univ, Dept Elect & Comp Engn, Binghamton, NY 13902 USA
[5] Forschungszentrum Julich, Helmholtz Inst Munster HI MS, IEK 12, Corrensstr 46, D-48149 Munster, Germany
基金
中国国家自然科学基金;
关键词
LiNi0.8Co0.1Mn0.1O2; cathode; TiO2; nano-coating; Dynamics control; Lithium-ion batteries; ENHANCED ELECTROCHEMICAL PERFORMANCE; DUAL-CONDUCTIVE LAYERS; OXIDE CATHODE; LINI0.8CO0.1MN0.1O2; CATHODE; LINI0.5CO0.2MN0.3O2; LINI0.6CO0.2MN0.2O2; SURFACE MODIFICATION; THERMAL-STABILITY; LONG-LIFE; LINI0.8CO0.15AL0.05O2;
D O I
10.1016/j.jpowsour.2020.228745
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to improve the performance of Ni-rich cathode materials for lithium-ion batteries at high cut-off voltage, a highly effective TiO2 nano-coating is constructed on the surface of LiNi0.8Co0.1Mn0.1O2 by precisely controlling the hydrolytic dynamics of Ti4+, and the effect of this coating layer is systematically studied, especially at high upper cut-off voltage. The continuous TiO2 nano-coating layer provides a complete protection for LiNi0.8Co0.1Mn0.1O2 particles and enhances the reversibility of the phase transition between hexagonal and hexagonal (H2 -> H3) during cycling, which guarantees an excellent cycling stability under high upper cut-off voltage up to 4.5 V. Electrochemical impedance spectroscopy results confirm a stable interface between electrolyte and electrode and the fast kinetics at the surface of the modified sample. High Resolution Transmission Electron Microscopy (HR-TEM) measurement for the cycled electrodes further verifies the slight structure decay of the coated sample comparing with the pristine one. Thus, the modified sample presents excellent cycling stability with capacity retention of 72.2% after 500 cycles and 63.4% after 1000 cycles with the upper cut-off voltage of 4.5 V and 4.3 V, respectively. This work provides a universal method to prepare conformal TiO2 nano-coating and also offer guidance to properly evaluate the function of a coating.
引用
收藏
页数:10
相关论文
共 47 条
[1]   Ni-Rich LiNi0.8Co0.1Mn0.1O2 Oxide Coated by Dual-Conductive Layers as High Performance Cathode for Lithium-Ion Batteries [J].
Chen, Shi ;
He, Tao ;
Su, Yuefeng ;
Lu, Yun ;
Ban, Liying ;
Chen, Lai ;
Zhang, Qiyu ;
Wang, Jing ;
Chen, Renjie ;
Wu, Feng .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (35) :29732-29743
[2]   LiNi0.8Co0.15Al0.05O2 cathode materials prepared by TiO2 nanoparticle coatings on Ni0.8Co0.15Al0.05(OH)2 Precursors [J].
Cho, Younghyun ;
Lee, Yong-Seok ;
Park, Seul-A ;
Lee, Youngil ;
Cho, Jaephil .
ELECTROCHIMICA ACTA, 2010, 56 (01) :333-339
[3]   Improved electrochemical performance of LiNi0.8Co0.15Al0.05O2 with ultrathin and thickness-controlled TiO2 shell via atomic layer deposition technology [J].
Dai, Gaole ;
Du, Hongjuan ;
Wang, ShanShan ;
Cao, Jiali ;
Yu, Min ;
Chen, Yanbin ;
Tang, Yuefeng ;
Li, Aidong ;
Chen, Yanfeng .
RSC ADVANCES, 2016, 6 (103) :100841-100848
[4]   Mixed-conducting interlayer boosting the electrochemical performance of Ni-rich layered oxide cathode materials for lithium ion batteries [J].
Fan, Qinglu ;
Yang, Shaodian ;
Liu, Jun ;
Liu, Haodong ;
Lin, Kaiji ;
Liu, Rui ;
Hong, Chaoyu ;
Liu, Liying ;
Chen, Yan ;
An, Ke ;
Liu, Ping ;
Shi, Zhicong ;
Yang, Yong .
JOURNAL OF POWER SOURCES, 2019, 421 :91-99
[5]   Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes [J].
Golubkov, Andrey W. ;
Fuchs, David ;
Wagner, Julian ;
Wiltsche, Helmar ;
Stangl, Christoph ;
Fauler, Gisela ;
Voitic, Gernot ;
Thaler, Alexander ;
Hacker, Viktor .
RSC ADVANCES, 2014, 4 (07) :3633-3642
[6]   Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material [J].
He, Wei ;
Yuan, Dingding ;
Qian, Jiangfeng ;
Ai, Xinping ;
Yang, Hanxi ;
Cao, Yuliang .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (37) :11397-11403
[7]   Re-heating effect of Ni-rich cathode material on structure and electrochemical properties [J].
Jo, Jae Hyeon ;
Jo, Chang-Heum ;
Yashiro, Hitoshi ;
Kim, Sun-Jae ;
Myung, Seung-Taek .
JOURNAL OF POWER SOURCES, 2016, 313 :1-8
[8]   Selective TiO2 Nanolayer Coating by Polydopamine Modification for Highly Stable Ni-Rich Layered Oxides [J].
Kim, Hyeongwoo ;
Jang, Jihye ;
Byun, Dongjin ;
Kim, Hyung-Seok ;
Choi, Wonchang .
CHEMSUSCHEM, 2019, 12 (24) :5253-5264
[9]   Microstructure-Controlled Ni-Rich Cathode Material by Microscale Compositional Partition for Next-Generation Electric Vehicles [J].
Kim, Un-Hyuck ;
Ryu, Hoon-Hee ;
Kim, Jae-Hyung ;
Muecke, Robert ;
Kaghazchi, Payam ;
Yoon, Chong S. ;
Sun, Yang-Kook .
ADVANCED ENERGY MATERIALS, 2019, 9 (15)
[10]   Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material [J].
Kong, Ji-Zhou ;
Ren, Chong ;
Tai, Guo-An ;
Zhang, Xiang ;
Li, Ai-Dong ;
Wu, Di ;
Li, Hui ;
Zhou, Fei .
JOURNAL OF POWER SOURCES, 2014, 266 :433-439