Big data analysis for brain tumor detection: Deep convolutional neural networks

被引:190
|
作者
Amin, Javeria [1 ]
Sharif, Muhammad [1 ]
Yasmin, Mussarat [1 ]
Fernandes, Steven Lawrence [2 ]
机构
[1] COMSATS Inst Informat Technol, Dept Comp Sci, Wah Cantt, Pakistan
[2] Sahyadri Coll Engn & Management, Dept Elect & Commun Engn, Mangalore, Karnataka, India
关键词
Random forests; Segmentation; Patches; Filters; Tissues; ISCHEMIC-STROKE LESION; SEGMENTATION; IMAGES; CRF;
D O I
10.1016/j.future.2018.04.065
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Brain tumor detection is an active area of research in brain image processing. In this work, a methodology is proposed to segment and classify the brain tumor using magnetic resonance images (MRI). Deep Neural Networks (DNN) based architecture is employed for tumor segmentation. In the proposed model, 07 layers are used for classification that consist of 03 convolutional, 03 ReLU and a softmax layer. First the input MR image is divided into multiple patches and then the center pixel value of each patch is supplied to the DNN. DNN assign labels according to center pixels and perform segmentation. Extensive experiments are performed using eight large scale benchmark datasets including BRATS 2012 (image dataset and synthetic dataset), 2013 (image dataset and synthetic dataset), 2014, 2015 and ISLES (Ischemic stroke lesion segmentation) 2015 and 2017. The results are validated on accuracy (ACC), sensitivity (SE), specificity (SP), Dice Similarity Coefficient (DSC), precision, false positive rate (FPR), true positive rate (TPR) and Jaccard similarity index (JSI) respectively. (C) 2018 Published by Elsevier B.V.
引用
收藏
页码:290 / 297
页数:8
相关论文
共 50 条
  • [41] Smile detection in the wild with deep convolutional neural networks
    Junkai Chen
    Qihao Ou
    Zheru Chi
    Hong Fu
    Machine Vision and Applications, 2017, 28 : 173 - 183
  • [42] Evaluation of deep convolutional neural networks for glaucoma detection
    Phan, Sang
    Satoh, Shin'ichi
    Yoda, Yoshioki
    Kashiwagi, Kenji
    Oshika, Tetsuro
    Oshika, Tetsuro
    Hasegawa, Takashi
    Kashiwagi, Kenji
    Miyake, Masahiro
    Sakamoto, Taiji
    Yoshitomi, Takeshi
    Inatani, Masaru
    Yamamoto, Tetsuya
    Sugiyama, Kazuhisa
    Nakamura, Makoto
    Tsujikawa, Akitaka
    Sotozono, Chie
    Sonoda, Koh-Hei
    Terasaki, Hiroko
    Ogura, Yuichiro
    Fukuchi, Takeo
    Shiraga, Fumio
    Nishida, Kohji
    Nakazawa, Toru
    Aihara, Makoto
    Yamashita, Hidetoshi
    Hiyoyuki, Iijima
    JAPANESE JOURNAL OF OPHTHALMOLOGY, 2019, 63 (03) : 276 - 283
  • [43] Deep Convolutional Neural Networks for Fire Detection in Images
    Sharma, Jivitesh
    Granmo, Ole-Christoffer
    Goodwin, Morten
    Fidje, Jahn Thomas
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2017, 2017, 744 : 183 - 193
  • [44] Object Detection Using Deep Convolutional Neural Networks
    Qian, Huimin
    Xu, Jiawei
    Zhou, Jun
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 1151 - 1156
  • [45] Evaluation of deep convolutional neural networks for glaucoma detection
    Sang Phan
    Shin’ichi Satoh
    Yoshioki Yoda
    Kenji Kashiwagi
    Tetsuro Oshika
    Japanese Journal of Ophthalmology, 2019, 63 : 276 - 283
  • [46] Smoke Detection Based on Deep Convolutional Neural Networks
    Tao, Chongyuan
    Zhang, Jian
    Wang, Pan
    2016 2ND INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS - COMPUTING TECHNOLOGY, INTELLIGENT TECHNOLOGY, INDUSTRIAL INFORMATION INTEGRATION (ICIICII), 2016, : 150 - 153
  • [47] Deep Convolutional Neural Networks for Forest Fire Detection
    Zhang, Qingjie
    Xu, Jiaolong
    Xu, Liang
    Guo, Haifeng
    PROCEEDINGS OF THE 2016 INTERNATIONAL FORUM ON MANAGEMENT, EDUCATION AND INFORMATION TECHNOLOGY APPLICATION, 2016, 47 : 568 - 575
  • [48] Deep Convolutional Neural Networks for Breast Cancer Detection
    Roy, Ankit
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 169 - 171
  • [49] Smile detection in the wild with deep convolutional neural networks
    Chen, Junkai
    Ou, Qihao
    Chi, Zheru
    Fu, Hong
    MACHINE VISION AND APPLICATIONS, 2017, 28 (1-2) : 173 - 183
  • [50] Deep Convolutional Neural Networks for Chest Diseases Detection
    Abiyev, Rahib H.
    Ma'aitah, Mohammad Khaleel Sallam
    JOURNAL OF HEALTHCARE ENGINEERING, 2018, 2018