Big data analysis for brain tumor detection: Deep convolutional neural networks

被引:190
|
作者
Amin, Javeria [1 ]
Sharif, Muhammad [1 ]
Yasmin, Mussarat [1 ]
Fernandes, Steven Lawrence [2 ]
机构
[1] COMSATS Inst Informat Technol, Dept Comp Sci, Wah Cantt, Pakistan
[2] Sahyadri Coll Engn & Management, Dept Elect & Commun Engn, Mangalore, Karnataka, India
来源
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE | 2018年 / 87卷
关键词
Random forests; Segmentation; Patches; Filters; Tissues; ISCHEMIC-STROKE LESION; SEGMENTATION; IMAGES; CRF;
D O I
10.1016/j.future.2018.04.065
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Brain tumor detection is an active area of research in brain image processing. In this work, a methodology is proposed to segment and classify the brain tumor using magnetic resonance images (MRI). Deep Neural Networks (DNN) based architecture is employed for tumor segmentation. In the proposed model, 07 layers are used for classification that consist of 03 convolutional, 03 ReLU and a softmax layer. First the input MR image is divided into multiple patches and then the center pixel value of each patch is supplied to the DNN. DNN assign labels according to center pixels and perform segmentation. Extensive experiments are performed using eight large scale benchmark datasets including BRATS 2012 (image dataset and synthetic dataset), 2013 (image dataset and synthetic dataset), 2014, 2015 and ISLES (Ischemic stroke lesion segmentation) 2015 and 2017. The results are validated on accuracy (ACC), sensitivity (SE), specificity (SP), Dice Similarity Coefficient (DSC), precision, false positive rate (FPR), true positive rate (TPR) and Jaccard similarity index (JSI) respectively. (C) 2018 Published by Elsevier B.V.
引用
收藏
页码:290 / 297
页数:8
相关论文
共 50 条
  • [1] Improvement of Automatic Glioma Brain Tumor Detection Using Deep Convolutional Neural Networks
    Altameem, Ayman
    Mallikarjuna, Basetty
    Saudagar, Abdul Khader Jilani
    Sharma, Meenakshi
    Poonia, Ramesh Chandra
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (06) : 530 - 544
  • [2] Development of automatic glioma brain tumor detection system using deep convolutional neural networks
    Kalaiselvi, Thiruvenkadam
    Padmapriya, Thiyagarajan
    Sriramakrishnan, Padmanaban
    Priyadharshini, Venugopal
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2020, 30 (04) : 926 - 938
  • [3] Smart brain tumor diagnosis system utilizing deep convolutional neural networks
    Anagun, Yildiray
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (28) : 44527 - 44553
  • [4] Detection and diagnosis of brain tumors using deep learning convolutional neural networks
    Gurunathan, Akila
    Krishnan, Batri
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2021, 31 (03) : 1174 - 1184
  • [5] Brain Tumor Segmentation Using a Patch-Based Convolutional Neural Network: A Big Data Analysis Approach
    Ullah, Faizan
    Salam, Abdu
    Abrar, Mohammad
    Amin, Farhan
    MATHEMATICS, 2023, 11 (07)
  • [6] Deep Convolutional Neural Network for Brain Tumor Segmentation
    Kumar, K. Sambath
    Rajendran, A.
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2023, 18 (05) : 3925 - 3932
  • [7] Deep Convolutional Neural Network for Brain Tumor Segmentation
    K. Sambath Kumar
    A. Rajendran
    Journal of Electrical Engineering & Technology, 2023, 18 : 3925 - 3932
  • [8] Accurate brain tumor detection using deep convolutional neural network
    Khan, Md Saikat Islam
    Rahman, Anichur
    Debnath, Tanoy
    Karim, Md Razaul
    Nasir, Mostofa Kamal
    Band, Shahab S.
    Mosavi, Amir
    Dehzangi, Iman
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 4733 - 4745
  • [9] Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data
    Khaled Bousabarah
    Maximilian Ruge
    Julia-Sarita Brand
    Mauritius Hoevels
    Daniel Rueß
    Jan Borggrefe
    Nils Große Hokamp
    Veerle Visser-Vandewalle
    David Maintz
    Harald Treuer
    Martin Kocher
    Radiation Oncology, 15
  • [10] Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data
    Bousabarah, Khaled
    Ruge, Maximilian
    Brand, Julia-Sarita
    Hoevels, Mauritius
    Ruess, Daniel
    Borggrefe, Jan
    Hokamp, Nils Grosse
    Visser-Vandewalle, Veerle
    Maintz, David
    Treuer, Harald
    Kocher, Martin
    RADIATION ONCOLOGY, 2020, 15 (01)