Facial feature extraction using PCA and wavelet multi-resolution images

被引:8
作者
Kim, KA [1 ]
Oh, SY [1 ]
Choi, HC [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Elect Engn, Pohang 790784, South Korea
来源
SIXTH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, PROCEEDINGS | 2004年
关键词
D O I
10.1109/AFGR.2004.1301572
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel algorithm for the extraction of the facial feature (eyebrow, eye, nose and mouth) fields from 2-D gray-level face images. The fundamental philosophy is that eigenfeatures, derived from the eigenvalues and eigenvectors of the gray-level data set constructed from the feature fields, are very useful to locate these fields efficiently. In addition multi-resolution images, derived from a 2-D D (Discrete Wavelet Transform), are used to save the search time of the facial features. The experimental results indicate that the proposed algorithm is robust against facial feature size and slight variations of pose.
引用
收藏
页码:439 / 444
页数:6
相关论文
共 11 条
[1]   FACE RECOGNITION - FEATURES VERSUS TEMPLATES [J].
BRUNELLI, R ;
POGGIO, T .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (10) :1042-1052
[2]  
Huang WM, 1998, INT C PATT RECOG, P110, DOI 10.1109/ICPR.1998.711092
[3]  
*INT MULT LAB, 2001, AS FAC IM DAT PF01
[4]   A hierarchical neural network for human face detection [J].
Juell, P ;
Marsh, R .
PATTERN RECOGNITION, 1996, 29 (05) :781-787
[5]  
Kanade T., 1973, Technical report
[6]  
Pinto-Elias R, 1998, INT C PATT RECOG, P1360, DOI 10.1109/ICPR.1998.711954
[7]   Automatic extraction of eye and mouth fields from a face image using eigenfeatures and ensemble networks [J].
Ryu, YS ;
Oh, SY .
APPLIED INTELLIGENCE, 2002, 17 (02) :171-185
[8]   EIGENFACES FOR RECOGNITION [J].
TURK, M ;
PENTLAND, A .
JOURNAL OF COGNITIVE NEUROSCIENCE, 1991, 3 (01) :71-86
[9]  
WANG YK, 1995, P 1995 4 IEEE INT C, P778
[10]  
XI D, 2002, P 5 INT C AUT FAC GE, P76