GLiMMPS: robust statistical model for regulatory variation of alternative splicing using RNA-seq data

被引:51
|
作者
Zhao, Keyan [1 ,2 ]
Lu, Zhi-xiang [1 ,2 ]
Park, Juw Won [1 ,2 ]
Zhou, Qing [3 ]
Xing, Yi [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA 90095 USA
[2] Univ Iowa, Dept Internal Med, Iowa City, IA 52242 USA
[3] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
来源
GENOME BIOLOGY | 2013年 / 14卷 / 07期
关键词
RNA-seq; alternative splicing; sQTL; exon; generalized linear mixed model; GENOME-WIDE ASSOCIATION; DIFFERENTIAL EXPRESSION ANALYSIS; GENE-EXPRESSION; VARIANTS; DISEASE; LOCI; SUSCEPTIBILITY; IDENTIFICATION; TRANSCRIPTOME; POLYMORPHISMS;
D O I
10.1186/gb-2013-14-7-r74
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
To characterize the genetic variation of alternative splicing, we develop GLiMMPS, a robust statistical method for detecting splicing quantitative trait loci (sQTLs) from RNA-seq data. GLiMMPS takes into account the individual variation in sequencing coverage and the noise prevalent in RNA-seq data. Analyses of simulated and real RNA-seq datasets demonstrate that GLiMMPS outperforms competing statistical models. Quantitative RT-PCR tests of 26 randomly selected GLiMMPS sQTLs yielded a validation rate of 100%. As population-scale RNA-seq studies become increasingly affordable and popular, GLiMMPS provides a useful tool for elucidating the genetic variation of alternative splicing in humans and model organisms.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] GLiMMPS: robust statistical model for regulatory variation of alternative splicing using RNA-seq data
    Keyan Zhao
    Zhi-xiang Lu
    Juw Won Park
    Qing Zhou
    Yi Xing
    Genome Biology, 14
  • [2] A Statistical Method for the Detection of Alternative Splicing Using RNA-Seq
    Wang, Liguo
    Xi, Yuanxin
    Yu, Jun
    Dong, Liping
    Yen, Laising
    Li, Wei
    PLOS ONE, 2010, 5 (01):
  • [3] Identification of Alternative Splicing and Polyadenylation in RNA-seq Data
    Dixit, Gunjan
    Zheng, Ying
    Parker, Brian
    Wen, Jiayu
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2021, (172):
  • [4] Identification of alternative splicing regulatory patterns and characteristic splicing factors in heart failure using RNA-seq data and machine learning
    Li, Jia
    Tu, Dingyuan
    Li, Songhua
    Guo, Zhifu
    Song, Xiaowei
    HELIYON, 2024, 10 (15)
  • [5] nagnag: Identification and quantification of NAGNAG alternative splicing using RNA-Seq data
    Yan, Xiaoyan
    Sablok, Gaurav
    Feng, Gang
    Ma, Jiaxin
    Zhao, Hongwei
    Sun, Xiaoyong
    FEBS LETTERS, 2015, 589 (15) : 1766 - 1770
  • [6] Comparison of Alternative Splicing Junction Detection Tools Using RNA-Seq Data
    Ding, Lizhong
    Rath, Ethan
    Bai, Yongsheng
    CURRENT GENOMICS, 2017, 18 (03) : 268 - 277
  • [7] rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data
    Shen, Shihao
    Park, Juw Won
    Lu, Zhi-xiang
    Lin, Lan
    Henry, Michael D.
    Wu, Ying Nian
    Zhou, Qing
    Xing, Yi
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (51) : E5593 - E5601
  • [8] Alternative splicing, RNA-seq and drug discovery
    Zhao, Shanrong
    DRUG DISCOVERY TODAY, 2019, 24 (06) : 1258 - 1267
  • [9] Biomarker Identification from RNA-Seq Data using a Robust Statistical Approach
    Akond, Zobaer
    Alam, Munirul
    Mollah, Md. Nurul Haque
    BIOINFORMATION, 2018, 14 (04) : 153 - 163
  • [10] SplicingTypesAnno: Annotating and quantifying alternative splicing events for RNA-Seq data
    Sun, Xiaoyong
    Zuo, Fenghua
    Ru, Yuanbin
    Guo, Jiqiang
    Yan, Xiaoyan
    Sablok, Gaurau
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2015, 119 (01) : 53 - 62