A Novel Aβ Segmentation Algorithm Based on 3D Lattice Boltzmann Method

被引:0
作者
Jiang, J. H. [1 ]
Shu, X. H. [1 ]
Yan, Z. Z. [1 ]
Huang, Z. M. [2 ]
机构
[1] Shanghai Univ, Sch Commun & Informat Technol, Inst Biomed Engn, Shanghai 200444, Peoples R China
[2] Fudan Univ, Huashan Hosp, PET Ctr, Shanghai 200040, Peoples R China
基金
中国国家自然科学基金;
关键词
Alzheimer's Disease (AD); Amyloid-beta Peptide (A beta); Pittsburgh Compound B Positron Emission Tomography (PiB PET); 3D-Lattice Boltzmann Method (LBM); Image Segmentation; PET; QUANTIFICATION; DELINEATION; IMAGES; CT;
D O I
10.1166/jmihi.2015.1670
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pittsburgh compound B Positron Emission Tomography (PiB-PET) imaging is a new technology for detecting amyloid-beta peptide (A beta). A beta l is a pathological bio-data that distinctly appears in most neuro-degeneration diseases, such as Alzheimer's disease (AD). The 3D segmentation of A beta in PiB-PET images aids radiologists in diagnosing AD. However, the existing 3D segmentation algorithms (e.g., thresholding based algorithms, Level Set Method (LSM) based algorithms, etc.) are limited by their accuracy or computing time and thus cannot meet clinical requirements. This paper proposes a novel A beta segmentation algorithm based on the 3D Lattice Boltzmann Method (LBM). The experimental results demonstrate that the novel algorithm achieves effective and efficient segmentation results in PiB-PET images.
引用
收藏
页码:1921 / 1925
页数:5
相关论文
共 19 条
[1]   An evaluation of four automatic methods of segmenting the subcortical structures in the brain [J].
Babalola, Kolawole Oluwole ;
Patenaude, Brian ;
Aljabar, Paul ;
Schnabel, Julia ;
Kennedy, David ;
Crum, William ;
Smith, Stephen ;
Cootes, Tim ;
Jenkinson, Mark ;
Rueckert, Daniel .
NEUROIMAGE, 2009, 47 (04) :1435-1447
[2]   Joint segmentation of anatomical and functional images: Applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images [J].
Bagci, Ulas ;
Udupa, Jayaram K. ;
Mendhiratta, Neil ;
Foster, Brent ;
Xu, Ziyue ;
Yao, Jianhua ;
Chen, Xinjian ;
Mollura, Daniel J. .
MEDICAL IMAGE ANALYSIS, 2013, 17 (08) :929-945
[3]  
Balla-Arabe S., 2011, Proceedings of the 2011 Seventh International Conference on Computational Intelligence and Security (CIS 2011), P1159, DOI 10.1109/CIS.2011.257
[4]   PET quantification with a histogram derived total activity metric: Superior quantitative consistency compared to total lesion glycolysis with absolute or relative SUV thresholds in phantoms and lung cancer patients [J].
Burger, Irene A. ;
Vargas, Hebert Alberto ;
Apte, Aditya ;
Beattie, Bradley J. ;
Humm, John L. ;
Gonen, Mithat ;
Larson, Steven M. ;
Schmidtlein, C. Ross .
NUCLEAR MEDICINE AND BIOLOGY, 2014, 41 (05) :410-418
[5]   ACCOMP: Augmented cell competition algorithm for breast lesion demarcation in sonography [J].
Cheng, Jie-Zhi ;
Chou, Yi-Hong ;
Huang, Chiun-Sheng ;
Chang, Yeun-Chung ;
Tiu, Chui-Mei ;
Yeh, Fang-Cheng ;
Chen, Kuei-Wu ;
Tsou, Chi-Hsuan ;
Chen, Chung-Ming .
MEDICAL PHYSICS, 2010, 37 (12) :6240-6252
[6]   Early detection of Alzheimer's disease using PiB and FDG PET [J].
Cohen, Ann D. ;
Klunk, William E. .
NEUROBIOLOGY OF DISEASE, 2014, 72 :117-122
[7]   18F-FDG-PET-based tumor delineation in cervical cancer: Threshold contouring and lesion volumes [J].
Erlich, F. ;
Camisao, C. ;
Nogueira-Rodrigues, A. ;
Altino, S. ;
Ferreira, C. G. ;
Mamede, M. .
REVISTA ESPANOLA DE MEDICINA NUCLEAR E IMAGEN MOLECULAR, 2013, 32 (03) :162-166
[8]  
Farid K., 2014, ALZHEIMERS DEMENT, V10, P709
[9]  
Lee SP, 2008, IEEE ENG MED BIO, P5514, DOI 10.1109/IEMBS.2008.4650463
[10]   Minimization of region-scalable fitting energy for image segmentation [J].
Li, Chunming ;
Kao, Chiu-Yen ;
Gore, Joint C. ;
Ding, Zhaohua .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (10) :1940-1949