Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas

被引:116
作者
Linnenbank, Heiko [1 ]
Grynko, Yevgen [2 ]
Foerstner, Jens [2 ]
Linden, Stefan [1 ]
机构
[1] Univ Bonn, Phys Inst, D-53115 Bonn, Germany
[2] Univ Paderborn, Dept Elect Engn, D-33102 Paderborn, Germany
来源
LIGHT-SCIENCE & APPLICATIONS | 2016年 / 5卷
关键词
nanoantennas; plasmonics; second harmonic generation; HARMONIC-GENERATION; OPTICAL-PROPERTIES; NANOCRYSTALS; NANOSTRUCTURES; NANOPARTICLES; MICROSCOPY; EFFICIENCY; ANTENNAS; PROBES;
D O I
10.1038/lsa.2016.13
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Plasmonic nanoantennas provide unprecedented opportunities to concentrate light fields in subwavelength-sized volumes. By placing a nonlinear dielectric nanoparticle in such a hot spot, one can hope to take advantage of both the field enhancement provided by nanoantennas and the large, nonlinear optical susceptibility of dielectric nanoparticles. To test this concept, we combine gold gap nanoantennas with second-order, nonlinear zinc sulfide nanoparticles, and perform second harmonic generation (SHG) spectroscopy on the combined hybrid dielectric/plasmonic nanoantennas as well as on the individual constituents. We find that SHG from the bare gold nanoantennas, even though it should be forbidden due to symmetry reasons, is several orders of magnitude larger than that of the bare zinc sulfide nanoparticles. Even stronger second harmonic signals are generated by the hybrid dielectric/plasmonic nanoantennas. Control experiments with nanoantennas containing linear lanthanum fluoride nanoparticles reveal; however, that the increased SHG efficiency of the hybrid dielectric/plasmonic nanoantennas does not depend on the nonlinear optical susceptibility of the dielectric nanoparticles but is an effect of the modification of the dielectric environment. The combination of a hybrid dielectric/plasmonic nanoantenna, which is only resonant for the incoming pump light field, with a second nanoantenna, which is resonant for the generated second harmonic light, allows for a further increase in the efficiency of SHG. As the second nanoantenna mediates the coupling of the second harmonic light to the far field, this double-resonant approach also provides us with control over the polarization of the generated light.
引用
收藏
页码:e16013 / e16013
页数:7
相关论文
共 45 条
[1]   Capturing the Optical Phase Response of Nanoantennas by Coherent Second-Harmonic Microscopy [J].
Accanto, Nicolo ;
Piatkowski, Lukasz ;
Renger, Jan ;
van Hulst, Niek F. .
NANO LETTERS, 2014, 14 (07) :4078-4082
[2]  
Akhiezer A. I., 1975, PLASMA ELECTRODYNAMI, V2
[3]  
Aouani H, 2014, NAT NANOTECHNOL, V9, P290, DOI [10.1038/NNANO.2014.27, 10.1038/nnano.2014.27]
[4]   RESONANT OPTICAL SECOND HARMONIC GENERATION AND MIXING [J].
ASHKIN, A ;
BOYD, GD ;
DZIEDZIC, JM .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1966, QE 2 (06) :109-+
[5]   Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials [J].
Baudrier-Raybaut, M ;
Haïdar, R ;
Kupecek, P ;
Lemasson, P ;
Rosencher, E .
NATURE, 2004, 432 (7015) :374-376
[6]   Optical Antennas [J].
Bharadwaj, Palash ;
Deutsch, Bradley ;
Novotny, Lukas .
ADVANCES IN OPTICS AND PHOTONICS, 2009, 1 (03) :438-483
[7]   Nanoantennas for visible and infrared radiation [J].
Biagioni, Paolo ;
Huang, Jer-Shing ;
Hecht, Bert .
REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (02)
[8]   Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy [J].
Bonacina, L. ;
Mugnier, Y. ;
Courvoisier, F. ;
Le Dantec, R. ;
Extermann, J. ;
Lambert, Y. ;
Boutou, V. ;
Galez, C. ;
Wolf, J.-P. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2007, 87 (03) :399-403
[9]  
Boyd RW, 2008, NONLINEAR OPTICS, 3RD EDITION, P1
[10]   Optical Second Harmonic Generation of Single Metallic Nanoparticles Embedded in a Homogeneous Medium [J].
Butet, Jeremy ;
Duboisset, Julien ;
Bachelier, Guillaume ;
Russier-Antoine, Isabelle ;
Benichou, Emmanuel ;
Jonin, Christian ;
Brevet, Pierre-Francois .
NANO LETTERS, 2010, 10 (05) :1717-1721