CYCLOTOMIC QUIVER HECKE ALGEBRAS CORRESPONDING TO MINUSCULE REPRESENTATIONS

被引:1
作者
Park, Euiyong [1 ]
机构
[1] Univ Seoul, Dept Math, Seoul 02504, South Korea
基金
新加坡国家研究基金会;
关键词
Categorification; minuscule representations; quantum groups; quiver Hecke algebras; ELEMENTS;
D O I
10.4134/JKMS.j190647
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, we give an explicit basis of the cyclotomic quiver Hecke algebra corresponding to a minuscule representation of finite type.
引用
收藏
页码:1373 / 1388
页数:16
相关论文
共 19 条
  • [1] [Anonymous], 2015, SEM LOTHAR COMBIN, V75
  • [2] [Anonymous], 2008, PREPRINT
  • [3] Representation Type of Finite Quiver Hecke Algebras of Type Al(1) for Arbitrary Parameters
    Ariki, Susumu
    Iijima, Kazuto
    Park, Euiyong
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (15) : 6070 - 6135
  • [4] Representation type of finite quiver Hecke algebras of type A2l(2)
    Ariki, Susumu
    Park, Euiyong
    [J]. JOURNAL OF ALGEBRA, 2014, 397 : 457 - 488
  • [5] Bourbaki N., 2005, LIE GROUPS LIE ALGEB
  • [6] Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras
    Brundan, Jonathan
    Kleshchev, Alexander
    [J]. INVENTIONES MATHEMATICAE, 2009, 178 (03) : 451 - 484
  • [7] Fully commutative elements of type D and homogeneous representations of KLR-algebras
    Feinberg, Gabriel
    Lee, Kyu-Hwan
    [J]. JOURNAL OF COMBINATORICS, 2015, 6 (04) : 535 - 557
  • [8] Geck M., 2000, CHARACTERS FINITE CO
  • [9] Hong J., 2002, GRADUATE STUDIES MAT, V42, DOI DOI 10.1090/GSM/042
  • [10] HONG J, 1991, DUKE MATH J, V63, P46516