On the convergence of Dirichlet processes

被引:13
作者
Coquet, F
Slominski, L
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
[2] Nicholas Copernicus Univ, Fac Math & Informat, PL-87100 Torun, Poland
关键词
Dirichlet process; stochastic integral; weak convergence;
D O I
10.2307/3318693
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a given weakly convergent sequence {X-n} of Dirichlet processes we show weak convergence of the. sequence of the corresponding quadratic variation processes as well as stochastic integrals driven by the X-n values provided that the condition UTD (a counterpart to the condition UT for Dirichlet processes) holds true. Moreover, we show that under UTD the limit process of {X-n} is a Dirichlet process, too.
引用
收藏
页码:615 / 639
页数:25
相关论文
共 19 条
[1]   STOPPING TIMES AND TIGHTNESS [J].
ALDOUS, D .
ANNALS OF PROBABILITY, 1978, 6 (02) :335-340
[2]  
[Anonymous], BERNOUILLI
[3]   AN INTEGRAL FOR BOUNDED ALPHA-VARIATION PROCESSES [J].
BERTOIN, J .
ANNALS OF PROBABILITY, 1989, 17 (04) :1521-1535
[4]  
Bertoin J., 1986, Stochastics, V18, P155, DOI 10.1080/17442508608833406
[5]  
FOLLMER H, 1980, LECT NOTES MATH, V850, P144
[6]  
Follmer H., 1981, Lecture Notes in Math., V851, P476
[7]  
JACOD J, 1980, LECT NOTES MATH, V850, P547
[8]  
Jacod J., 2003, LIMIT THEOREMS STOCH
[9]   CONVERGENCE FOR STOCHASTIC-INTEGRAL SEQUENCES ON SKOROKHOD D1-SPACES [J].
JAKUBOWSKI, A ;
MEMIN, J ;
PAGES, G .
PROBABILITY THEORY AND RELATED FIELDS, 1989, 81 (01) :111-137
[10]   WEAK LIMIT-THEOREMS FOR STOCHASTIC INTEGRALS AND STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
KURTZ, TG ;
PROTTER, P .
ANNALS OF PROBABILITY, 1991, 19 (03) :1035-1070