THE ENZYMOLOGY OF POLYETHER BIOSYNTHESIS

被引:29
作者
Liu, Tiangang [1 ,2 ]
Cane, David E. [3 ]
Deng, Zixin [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Lab Microbiol Metab, Shanghai 200030, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200030, Peoples R China
[3] Brown Univ, Dept Chem, Providence, RI 02912 USA
来源
COMPLEX ENZYMES IN MICROBIAL NATURAL PRODUCT BIOSYNTHESIS, PART B: POLYKETIDES, AMINOCOUMARINS AND CARBOHYDRATES | 2009年 / 459卷
关键词
COMPLETE GENOME SEQUENCE; ERYTHROMYCIN POLYKETIDE SYNTHASE; STREPTOMYCES-COELICOLOR A3(2); TERMINAL THIOESTERASE DOMAIN; GENE-CLUSTER; OXIDATIVE CYCLIZATION; OXYGEN-ATOMS; MONENSIN-A; CHAIN RELEASE; SACCHAROPOLYSPORA-ERYTHRAEA;
D O I
10.1016/S0076-6879(09)04609-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Potyether ionophore antibiotics are a special class of polyketides widely used in veterinary medicine, and as food additives in animal husbandry. In this article, we review current knowledge about the mechanism of polyether biosynthesis, and the genetic and biochemical strategies used for its study. Several clear differences distinguish it from traditional type I modular polyketide biosynthesis: polyether backbones are assembled by modular polyketide synthases but are modified by two key enzymes, epoxidase and epoxide hydrolase, to generate the product. All double bonds involved in the oxidative cyclization in the polyketide backbone are of E geometry. Chain release in the polyether biosynthetic pathway requires a special type II thioesterase which specifically hydrolyzes the polyether thioester. All these discoveries should be very helpful for a deep understanding of the biosynthetic mechanism of this class of important natural compounds, and for the targeted engineering of polyether derivatives.
引用
收藏
页码:187 / 214
页数:28
相关论文
共 50 条
  • [31] Biosynthesis of the apoptolidins in Nocardiopsis sp FU 40
    Du, Yu
    Derewacz, Dagmara K.
    Deguire, Sean M.
    Teske, Jesse
    Ravel, Jacques
    Sulikowski, Gary A.
    Bachmann, Brian O.
    TETRAHEDRON, 2011, 67 (35) : 6568 - 6575
  • [32] Engineered polyketide biosynthesis and biocatalysis in Escherichia coli
    Gao, Xue
    Wang, Peng
    Tang, Yi
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 88 (06) : 1233 - 1242
  • [33] Triggering cryptic natural product biosynthesis in microorganisms
    Scherlach, Kirstin
    Hertweck, Christian
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2009, 7 (09) : 1753 - 1760
  • [34] fabC of Streptomyces lydicus involvement in the biosynthesis of streptolydigin
    Zhao, Guang-Rong
    Luo, Ting
    Zhou, Yong-Jin
    Jiang, Xin
    Qiao, Bin
    Yu, Feng-Ming
    Yuan, Ying-Jin
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2009, 83 (02) : 305 - 313
  • [35] Delineation of gilvocarcin, jadomycin, and landomycin pathways through combinatorial biosynthetic enzymology
    Kharel, Madan K.
    Rohr, Juergen
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2012, 16 (1-2) : 150 - 161
  • [36] Investigation of the biosynthesis of the pipecolate moiety of neuroprotective polyketide meridamycin
    Jiang, Hao
    Haltli, Bradley
    Feng, Xidong
    Cai, Ping
    Summers, Mia
    Lotvin, Jason
    He, Min
    JOURNAL OF ANTIBIOTICS, 2011, 64 (08) : 533 - 538
  • [37] Functions of Type II Thioesterases in Bacterial Polyketide Biosynthesis
    Luo, Hong-Dou
    Jin, Mei-Ying
    Wu, Hui
    Jiang, Hui
    PROTEIN AND PEPTIDE LETTERS, 2016, 23 (11) : 1032 - 1037
  • [38] Polyether ionophores-promising bioactive molecules for cancer therapy
    Huczynski, Adam
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2012, 22 (23) : 7002 - 7010
  • [39] Behaviour of catalytic probe during surface activation of polyether sulphone
    Vesel, A
    Mozetic, M
    VACUUM, 2001, 61 (2-4) : 373 - 377
  • [40] An Unusual Thioesterase Promotes Isochromanone Ring Formation in Ajudazol Biosynthesis
    Buntin, Kathrin
    Weissman, Kira J.
    Mueller, Rolf
    CHEMBIOCHEM, 2010, 11 (08) : 1137 - 1146