Solving convex programs by random walks

被引:133
作者
Bertsimas, D
Vempala, S
机构
[1] MIT, Sloan Sch Management, Cambridge, MA 02139 USA
[2] MIT, Ctr Operat Res, Cambridge, MA 02139 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
convex programs; random walks; polynomial time; algorithms; theory;
D O I
10.1145/1008731.1008733
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Minimizing a convex function over a convex set in n-dimensional space is a basic, general problem with many interesting special cases. Here, we present a simple new algorithm for convex optimization based on sampling by a random walk. It extends naturally to minimizing quasi-convex functions and to other generalizations.
引用
收藏
页码:540 / 556
页数:17
相关论文
共 23 条
[1]  
[Anonymous], P 31 ANN ACM S THEOR
[2]  
Bertsimas D., 1997, Introduction to linear optimization
[3]   A RANDOM POLYNOMIAL-TIME ALGORITHM FOR APPROXIMATING THE VOLUME OF CONVEX-BODIES [J].
DYER, M ;
FRIEZE, A ;
KANNAN, R .
JOURNAL OF THE ACM, 1991, 38 (01) :1-17
[4]   The Brunn-Minkowski inequality [J].
Gardner, RJ .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (03) :355-405
[5]   THE ELLIPSOID METHOD AND ITS CONSEQUENCES IN COMBINATORIAL OPTIMIZATION [J].
GROTSCHEL, M ;
LOVASZ, L ;
SCHRIJVER, A .
COMBINATORICA, 1981, 1 (02) :169-197
[6]  
Grotschel M, 2012, Geometric algorithms and combinatorial optimization, V2
[7]  
Grunbaum B., 1960, Pacific J. Math, V10, P1257, DOI [10.2140/pjm.1960.10.1257, DOI 10.2140/PJM.1960.10.1257]
[8]  
Jerrum M., 2001, P 33 ANN ACM S THEOR, P712
[9]  
Kalai A., 2002, J MACH LEARN RES, V3, P423
[10]  
Kannan R, 1997, RANDOM STRUCT ALGOR, V11, P1, DOI 10.1002/(SICI)1098-2418(199708)11:1<1::AID-RSA1>3.0.CO