Hadamard and Fejer-Hadamard inequalities for extended generalized fractional integrals involving special functions

被引:38
|
作者
Kang, Shin Min [1 ,2 ,3 ]
Farid, Ghulam [4 ]
Nazeer, Waqas [5 ]
Tariq, Bushra [6 ]
机构
[1] Gyeongsang Natl Univ, Dept Math, Jinju, South Korea
[2] Gyeongsang Natl Univ, Res Inst Nat Sci, Jinju, South Korea
[3] China Med Univ, Ctr Gen Educ, Taichung, Taiwan
[4] COMSATS Univ, Dept Math, Attock Campus, Islamabad, Pakistan
[5] Univ Educ, Div Sci & Technol, Lahore, Pakistan
[6] GGPS Kamalpur Alam, Attock, Pakistan
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2018年
关键词
Convex function; m-convex functions; Hadamard inequality; Fejer-Hadamard inequality; Fractional integrals; Extended generalized Mittag-Leffler function;
D O I
10.1186/s13660-018-1701-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the Hadamard and the Fejer-Hadamard inequalities for the extended generalized fractional integral operator involving the extended generalized Mittag-Leffler function. The extended generalized Mittag-Leffler function includes many known special functions. We have several such inequalities corresponding to special cases of the extended generalized Mittag-Leffler function. Also there we note the known results that can be obtained.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] GENERALIZATION OF THE FEJER-HADAMARD'S INEQUALITY FOR CONVEX FUNCTION ON COORDINATES
    Farid, Ghulam
    Rehman, Atiq Ur
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 31 (01): : 53 - 64
  • [42] Generalized Hermite-Hadamard type inequalities involving fractional integral operators
    Erhan Set
    Muhammed Aslam Noor
    Muhammed Uzair Awan
    Abdurrahman Gözpinar
    Journal of Inequalities and Applications, 2017
  • [43] Generalized Hermite-Hadamard type inequalities involving fractional integral operators
    Set, Erhan
    Noor, Muhammed Aslam
    Awan, Muhammed Uzair
    Gozpinar, Abdurrahman
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [44] New generalization of Hermite-Hadamard type inequalities via generalized fractional integrals
    Budak, Huseyin
    Ertugral, Fatma
    Sarikaya, Mehmet Zeki
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2020, 47 (02): : 369 - 386
  • [45] On Some New Extensions of Inequalities of Hermite-Hadamard Type for Generalized Fractional Integrals
    Budak, Huseyin
    Bilisik, Candan Can
    Sarikaya, Mehmet Zeki
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2022, 19 (02): : 65 - 79
  • [46] Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals
    Iscan, Imdat
    Wu, Shanhe
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 237 - 244
  • [47] Generalized Hadamard Fractional Integral Inequalities for Strongly (s, m)-Convex Functions
    Miao, Chao
    Farid, Ghulam
    Yasmeen, Hafsa
    Bian, Yanhua
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [48] On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals
    Yuruo Zhang
    JinRong Wang
    Journal of Inequalities and Applications, 2013 (1)
  • [49] Hermite–Hadamard–Fejér type inequalities involving generalized fractional integral operators
    Erhan Set
    Junesang Choi
    E. Aykan Alan
    The Journal of Analysis, 2019, 27 : 1007 - 1027
  • [50] Hermite-Hadamard type inequalities for conformable fractional integrals
    Khan, M. Adil
    Ali, T.
    Dragomir, S. S.
    Sarikaya, M. Z.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1033 - 1048